Experimental analysis of eGLOSA and eGLODTA transit control strategies

Giulio Giorgione, Francesco Viti, Marco Rinaldi, Georgios Laskaris, Marcin Seredynski

Research output: Contribution to conferencePaperpeer-review

Abstract

Battery powered electric buses have higher energy efficiency, lower emissions and noise when compared to buses with internal combustion engines. However, due to battery charging requirements, their large-scale integration into public transport operations is more complex. This study proposes a novel concept supporting said integration via new control strategies, dubbed e-GLOSA and e-GLODTA. These strategies extend the existing Green Light Optimal Speed and Dwell Time Systems (GLOSA/GLODTA) to account for the specific needs of electric buses. That is, they include the goals of minimizing the energy consumption between charging stations, and maximizing available charging time. At the same time, interference with schedule requirements is minimized. The formulated heuristics are tested on a Bus Rapid Transit (BRT) corridor case study, where different scenarios-such as placement of charging stations and bus regularity-are studied to assess under which conditions each action (maintain speed, accelerate or dwell for a longer time at a stop) is beneficial. Results show that eGLOSA contributes to schedule adherence while eGLODTA allows satisfying charging time constraints
Original languageEnglish
Pages170-175
DOIs
Publication statusPublished - 18 Aug 2017
Externally publishedYes
Event5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems - Naples, Italy
Duration: 26 Jun 201728 Jun 2017
Conference number: 5

Conference

Conference5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems
Abbreviated titleMT-ITS 2017
Country/TerritoryItaly
CityNaples
Period26/06/1728/06/17

Keywords

  • Electric Buses
  • Energy Management
  • GLODTA
  • GLOSA
  • ITS

Cite this