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Abstract 

Cut-off sampling is applied when there is a subset of units from the population 

from which getting the required information is too expensive or difficult and, 

therefore, those units are deliberately excluded from sample selection. If those 

excluded units are different from the sampled ones in the characteristics of inter-

est, naïve estimators obtained by ignoring the cut-off sampling may be severely 

biased. Calibration estimators have been proposed to reduce the mentioned de-

sign-bias. However, the resulting estimators may have large variance when esti-

mating in small domains. Similarly as calibration, model-based small area esti-

mation methods using auxiliary information might decrease this bias if the as-

sumed model holds for the whole population. At the same time, these methods 

provide more efficient estimators than calibration methods for small domains. 

We analyze the properties of calibration and model-based procedures for estima-

tion of small domain characteristics under cut-off sampling. Our results confirm 

that the model-based estimators reduce the bias due to cut-off sampling and per-

form significantly better in terms of mean squared error. 

Keywords: Calibration estimators; Cut-off sampling; EBLUP; EBP; Nested-error 

model; Unit level models. 
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1 Introduction

Haziza et al. (2010) describes cut-off sampling as a technique in which a set of units

is deliberately excluded from possible selection in a sample. For the OECD, it is a

sampling procedure in which a threshold is established and all units at or above (below)

the threshold are excluded from the possible selection in a sample. According to Särndal

et al. (1992), pp. 531-533, this sampling technique is typically used when the distribution

of the study variable is highly skewed and there is not a reliable frame covering the small

elements. Benedetti et al. (2010) recognizes the advantage of cut-off sampling in terms of

survey reduction cost. This procedure is often used in business surveys, where small firms

are deliberately excluded from the sample due to difficulty of getting information from

them. The cost of obtaining and maintaining the frame covering the whole population

of firms is much higher than the gain in accuracy obtained from a sample drawn from

this frame. The monthly survey of manufacturing performed by Statistics Canada is an

example of cut-off sampling (Benedetti et al., 2010). In Spain, the monthly survey of

industrial production index (IPI) performed by the Spanish National Statistical Institute

(in Spanish, INE) collects data from those firms which produce a significant volume of

products according to the annual industrial survey of products (in Spanish EIAP), see

INE (2018). Related surveys, e.g. the index of industrial prices (IIP) and the index of

business turnover (IBT) also use this sampling technique. This procedure leads to biased

estimates since the inclusion probabilities for the excluded units are zero, see e.g. Särndal

et al. (1992), Haziza et al. (2010) among others. Haziza et al. (2010) propose to use

auxiliary information either at the design or at the estimation stage in order to reduce

the bias when estimating population totals; more concretely, they propose to use balanced

sampling and/or calibration.

In this work, we restrict ourselves to the estimation stage and study how cut-off

sampling affects the estimation of domain (or area) parameters. We analyze some of

the calibration methods proposed by Haziza et al. (2010) to reduce this problem. For

domains with small sample size (small domains or areas), calibration estimators might

suffer from large sampling variances. Alternatively, we consider small area estimation
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methods. Concretely, for estimation of linear area parameters, we consider the empirical

best linear unbiased predictor (EBLUP) and, for general non-linear parameters, the

empirical best/Bayes predictor (EBP). We apply the methods studied in this work to

the estimation of the total sales of certain tobacco product in the provinces from Spain.

The material is organized as follows. Section 2 describes the set-up of this paper.

The following four sections describe the considered estimation methods, namely the basic

direct estimators (Section 3), different approaches to calibration (Section 4), the EBLUP

for estimation of linear parameters (Section 5) and the EBP for estimation of more general

parameters in small domains (Section 6). Section 7 describes a bootstrap procedure for

estimation of the mean squared error of the proposed small area estimators. Section 8

compares, through simulation experiments, the performance of the considered calibration

small area estimators under cut-off sampling. Section 9 describes the application and,

finally, Section 10 draws some conclusions.

2 Cut-off sampling in small areas

We consider a population U partitioned into m subsets Ui, i = 1, . . . ,m, called hereafter

domains or areas, of sizes Ni, i = 1, . . . ,m, with N =
∑m

i=1Ni. Independent samples

are drawn from the different domains, where the sample si of size ni from domain i is

supposed to be drawn by cut-off sampling, i = 1, . . . ,m. This is done by excluding from

the selection a subset of units UiE ⊆ Ui. In other words, the domain Ui is partitioned into

two subsets, UiI and UiE, called hereafter strata, of known sizes NiI and NiE respectively,

with Ni = NiI + NiE. Stratum UiI contains the units that can be potentially selected

for the sample, called here the set of included units, whereas stratum UiE contains those

units that are excluded.

In the next three sections, we focus on estimation of domain totals or means of a

variable of interest,

Yi =

Ni∑
i=1

yij, Ȳi = Yi/Ni, i = 1, . . . ,m,
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where yij denotes the value of this variable for the j-th unit within the i-th domain.

Under cut-off sampling within each domain, the sample si is supposed to be drawn from

the subset of included individuals, UiI , from domain i. Then, the inclusion probabilities

for the included individuals (j ∈ UiI) are πij = Pr(j ∈ si) > 0 and wij = π−1ij are the

corresponding sampling weights. However, for the excluded units (j ∈ UiE), the inclusion

probabilities are zero and, therefore, sampling weights are not defined. As a consequence,

for domains i with UiE 6= ∅, design-unbiased estimators of Yi or Ȳi do not exist.

3 Basic direct estimators

We first consider basic direct estimators, obtained using only the ni observations of

the variable of interest from the target area. In absence of cut-off sampling, these

estimators are design consistent as the domain sample size ni increases. Moreover, they

are nonparametric in the sense that do not require any model assumption. However,

they may have unacceptable sampling errors in small domains. Moreover, as we shall see

below, under cut-off sampling, their design bias might be substantial.

Note that, under cut-off sampling, the usual expansion estimator (Horvitz &

Thompson, 1952) of Yi obtained ignoring that the sample si is drawn only from UiI ,

Ŷi =
∑

j∈si wijyij, actually estimates the total in the included strata, YiI =
∑

i∈UiI
yij,

rather than the overall total Yi = YiI +YiE, where YiE =
∑

i∈UiE
yij. Indeed, Eπ(Ŷi) = YiI ,

where Eπ denotes expectation under the sampling-replication mechanism, since the

sampling weights wij = π−1ij in Ŷi expand to UiI and not to Ui. No one would use

this estimator since its bias, Bπ(Ŷi) = Eπ(Ŷi) − Yi = −YiE might be huge. However,

in absence of any additional information, it would make much more sense to use Hájek

estimator (Hájek, 1971) of the mean Ȳi, given by ˆ̄Y HA
i = Ŷi/N̂i, where N̂i =

∑
j∈si wij, as

estimator of the overall mean Ȳi. Then, one could estimate the total in domain i in terms

of the mean estimator, Ŷ HA
i = Ni

ˆ̄Y HA
i , considering that the means in the included and

excluded strata are equal. Indeed, ignoring the ratio bias (of lower order) and noting that
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Eπ(N̂i) = NiI , the approximate design-biases of Ŷ HA
i and ˆ̄Y HA

i are respectively given by

Bπ(Ŷ HA
i ) ∼= NiE(ȲiI − ȲiE), Bπ( ˆ̄Y HA

i ) ∼= N−1i NiE(ȲiI − ȲiE),

where ȲiI = YiI/NiI and ȲiE = YiE/NiE are the true means of the sets of included and

excluded units from area i respectively (Haziza et al., 2010). For a domain i with UiE 6= ∅,

this bias vanishes only when these two means coincide (ȲiI = ȲiE), which is unlikely in

the real cases where cut-off sampling is applied, see e.g. Haziza et al. (2010) or Section 9.

In the next section, we briefly describe calibration techniques as means to obtain

estimators of reduced design bias in the context of estimation in small domains under

cut-off sampling.

4 Calibration estimators

Calibration is applied when the true totals of certain auxiliary variables that are

potentially correlated with the study variable are known. The idea of calibration is

then adjusting the design weights applied in the expansion estimator of Yi, so that the

corresponding expansion estimators of the totals of the auxiliary variables match their

known true values (calibration constraints). If the adjusted weights provide estimators of

the available totals of the auxiliary variables that are absent of error, then one expects

that they will also decrease the error in the estimation of the total of the study variable,

provided that it is linearly related with the auxiliary variables. Even if there is an

underlying linear model, calibration estimators are design-consistent as the area sample

size ni increases even if the model does not hold.

As we shall see below, under cut-off sampling, calibration estimators reduce the design-

bias if the underlying linear model holds for the whole population (included and excluded

units). However, for small domains, they might still have unacceptably large sampling

errors.

Let us denote by xij the vector of auxiliary variables for unit j within domain i.

Depending on whether the domain totals or only the population totals of these auxiliary
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variables are available, we can apply different calibration approaches. First, consider that

the domain total Xi =
∑Ni

j=1 xij is available. In that case, one approach to calibration,

using for illustration the chi-squared distance, is to find the calibration weights hij for the

sample units in the domain, j ∈ si, that minimize the sum of distances to the original

weights, Gij(h,w) = (hij −wij)2/wij, for those units j ∈ si, subject to a set of calibration

constraints for the same domain i. In this case, the calibration weights for the sample

units in domain i, hij, j ∈ si, are the solution of the domain-specific problem

min
{hij :j∈si}

∑
j∈si

(hij − wij)2/wij (1)

s.t.
∑
j∈si

hijxij = Xi.

Typically, this problem is solved by the method of Lagrange multipliers. Defining the

lagrangian domain-specific function

Li =
∑
j∈si

(hij − wij)2/wij + 2λ′i

(∑
j∈si

hijxij −Xi

)
,

λi is the vector of Lagrange multipliers for that domain, taking derivatives of Li with

respect to hij, j ∈ si, and λi and equating them to zero, we obtain the calibration

weights that solve the above problem. Denoting X̂i =
∑

j∈si wijxij to the usual expansion

estimator of Xi, these calibration weights are given by

hij = wij(1 + x′ijλi), j ∈ si, (2)

λi =

(∑
j∈si

wijxijx
′
ij

)−1
(Xi − X̂i),

provided that
∑

j∈si wijxijx
′
ij is non-singular. Note that the new weights in (2) are

obtained as an adjustment of the ordinary design weights, hij = wijaij, with adjustment

factors

aij = 1 + (Xi − X̂i)
′

(∑
j∈si

wijxijx
′
ij

)−1
xij. (3)
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The calibration estimator of the domain total Yi is then given by the expansion estimator

based on the adjusted weights hij, that is,

Ŷ LCAL
i =

∑
j∈si

hijyij. (4)

Now replacing the adjusted weights hij = wijaij in (4) for aij given in (3), the calibration

estimator of Yi turns out to be equal to the generalized regression (GREG) estimator,

Ŷ LCAL
i = Ŷi + (Xi − X̂i)

′B̂i =: Ŷ GREG
i , (5)

where we have used the notation B̂i = (
∑

j∈si wijxijx
′
ij)
−1∑

j∈si wijxijyij. Note that B̂i

is the weighted least squares (WLS) estimator of the vector of regression coefficients βi

in the following linear regression model for the units in domain i:

yij = x′ijβi + εij, Em(εij) = 0, Em(ε2ij) = σ2
ε , j = 1, . . . , Ni. (6)

Thus, in (5), the regression corrects the bias of the basic expansion estimator Ŷi as

estimator of Yi with the help of the known domain totals in Xi.

In the above procedure, estimating for all the domains involves solving the corre-

sponding m calibration problems and requires availability of the m vectors of totals Xi,

i = 1, . . . ,m. In the case that only the overall population total X =
∑m

i=1

∑Ni

j=1 xij is

known, a different calibration estimator can be applied by minimizing the sum of distances

at the population level subject to a calibration constraint for the population total. In

this case, calibration weights are obtained at once for all the sample units, gij, j ∈ si,

i = 1, . . . ,m, by solving the following calibration problem:

min
{gij :j∈si}

m∑
i=1

∑
j∈si

(gij − wij)2/wij (7)

s.t.
m∑
i=1

∑
j∈si

gijxij = X.
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Defining now the Lagrangian function

L =
m∑
i=1

∑
j∈si

(gij − wij)2/wij + 2λ′

(
m∑
i=1

∑
j∈si

gijxij −Xi

)
,

where λ is the vector of Lagrange multipliers, taking derivatives with respect to gij and

λ and equating to zero, we obtain the new calibration weights for all the sample units.

These weights are given by

gij = wij(1 + x′ijλ), j ∈ si, i = 1, . . . ,m, (8)

λ =

(
m∑
i=1

∑
j∈si

wijxijx
′
ij

)−1
(X− X̂),

provided that
∑m

i=1

∑
j∈si wijxijx

′
ij is non-singular. The resulting calibration estimator of

the domain total Yi is then obtained as

Ŷ LCALN
i =

∑
j∈si

gijyij = Ŷi + (X− X̂)′B̂N
i , (9)

where, in this case, B̂N
i = (

∑m
`=1

∑
j∈s` w`jx`jx

′
`j)
−1∑

j∈si wijxijyij. Note that the

regression correction in Ŷ LCALN
i uses the national total X and its corresponding expansion

estimator unlike the GREG estimator given in (5).

The calibration (or GREG) estimator (5) is expected to have smaller design-bias than

(9) because it fits a different regression model for each domain i. On the other hand,

for domains with small sample sizes ni, its variance may be large since it uses only the

domain-specific data. The alternative calibration estimator given in (9) is expected to

have slightly larger design-bias because the calibration problem is solved at the national

level, but its design-variance should be smaller. Let us now study more formally these

properties. For this, we consider the theoretical version of the LCAL estimator of the

domain total (5), given by

Ỹ LCAL
i = Ŷi + (Xi − X̂i)

′BiI , (10)
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where here BiI = (
∑

j∈UiI
xijx

′
ij)
−1 ∑

j∈UiI
xijyij is the census LS estimator of βi in model

(6) based on the included units from domain i. Note that the sample si is drawn only

from UiI and thus B̂i estimates BiI . Using the facts that Eπ(Ŷi) = YiI and Eπ(X̂i) = XiI ,

where XiI =
∑

j∈UiI
xij and noting that Xi−XiI = XiE, for XiE =

∑
j∈UiE

xij, we obtain

the design-bias of this LCAL theoretical estimator, given by

Bπ(Ỹ LCAL
i ) = −(YiE −X′iEBiI). (11)

Now since the calibration estimator Ŷ LCAL
i is intended to estimate actually Yi for the

overall population rather than for the included units, for the domain mean Ȳi = Yi/Ni,

we consider the LCAL estimator given simply by ˆ̄Y LCAL
i = Ŷ LCAL

i /Ni. The bias of the

corresponding theoretical LCAL estimator of the mean, ˜̄Y LCAL
i = ˆ̄Yi + (X̄i − ˆ̄Xi)

′BiI , is

then given by

Bπ( ˜̄Y LCAL
i ) = −NiE

Ni

(ȲiE − X̄′iEBiI). (12)

This bias is small when either the proportion of excluded units is small, or when the

model for the included individuals also holds for the excluded ones. In fact, if the linear

regression model (6) actually holds for all the units in the domain (included and excluded),

then Em(BiI) = βi, which is constant for the included and excluded units, where here

Em denotes expectation under model (6). Taking now expectation of (12) under the

model (6), we obtain the bias under the model and the sampling replication mechanism

(model-design bias), given by

Bm,π( ˜̄Y LCAL
i ) = −NiE

Ni

{
Em(ȲiE)− X̄′iEEm(BiI)

}
= −NiE

Ni

(
X̄′iEβi − X̄′iEβi

)
= 0.

In contrast, assuming exactly the same regression model, the bias of the basic direct

estimator ˆ̄Y HA
i under cut-off sampling is not zero unless the means of the auxiliary
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variables for the excluded and included units are equal. Indeed,

Bm,π( ˆ̄Y HA
i ) =

NiE

Ni

Em(ȲiI − ȲiE)

=
NiE

Ni

(X̄iI − X̄iE)′βi. (13)

We have seen that the condition under which the LCAL estimator is design-unbiased,

namely that the linear model (6) holds for all the units in the domain, is much weaker

than the requirements for the basic direct estimator to be design-unbiased. This means

that calibration estimators will tend to be less biased than the considered basic direct

estimator.

For the alternative calibration estimator (9), we define similarly its theoretical version

Ỹ LCALN
i = Ŷi + (X− X̂)′BN

iI , (14)

where here, BN
i = (

∑m
`=1

∑
j∈U`I

x`jx
′
`j)
−1∑

j∈UiI
xijyij. Using the decomposition X =

XI + XE, where XI and XE are the national totals for the included and excluded units

respectively, we obtain the design bias of Ỹ LCALN
i , given by

Bπ(Ỹ LCALN
i ) = −

(
YiE −X′EBN

iI

)
. (15)

Consider now the linear model with constant regression coefficients for all the

population units, called model m2,

yij = x′ijβ + εij, Em2(εij) = 0, Em2(ε
2
ij) = σ2

ε , j = 1, . . . , Ni, i = 1, . . . ,m. (16)

Note that, under this model, Em2(B
N
iI ) 6= β in general, but considering instead the sum

BI =
∑m

i=1 BN
iI , we have Em2(BI) = β. This means that the LCALN estimator for

particular domain, Ỹ LCALN
i , is not model-design unbiased, because

Bm2,π(Ỹ LCALN
i ) = −

{
X′iEβ −X′EEm2(B

N
iI )
}
,
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is not necessarily equal to zero. However, the national estimator obtained adding those

of the domains, Ỹ LCALN =
∑m

i=1 Ỹ
LCALN
i = Ŷ + (X − X̂)′BI , is actually model-design

unbiased, because

Bm2,π(Ỹ LCALN) = −{X′Eβ −X′EEm2(BI)} = 0.

Hence, under the model (16), the LCALN estimator is not model-design unbiased for a

particular domain, but it is unbiased when aggregating for all the domains, provided that

the same model holds for the included and excluded units in all domains. For the mean

Ȳi, the bias of the estimator ˜̄Y LCALN
i = Ỹ LCALN

i /Ni is the same as that for the total Yi,

but dividing by Ni.

Let us now study the variances. For the theoretical LCAL estimator (10), the design-

variance is given by

Vπ(Ỹ LCAL
i ) = Vπ(Ŷi − X̂′iBiI). (17)

This variance can be easily estimated by expressing it as the variance of an expansion

estimator, Vπ

(∑
j∈si wijεij

)
, for εij = yij − x′ijBiI , j ∈ UiI , and then applying the usual

variance estimators for these expansion estimators. In the case of the LCALN estimator

given in (14), the variance is given by

Vπ(Ỹ LCALN
i ) = Vπ(Ŷi − X̂′BN

iI ).

The contribution of X̂ to this variance is much smaller than the contribution of X̂i in

(17), because X̂ is calculated with the n sample units, unlike X̂i which uses only the ni

units in domain i. This means that, provided that the domain and national regression

lines are similar, the variance of the LCALN estimator, obtained from the calibration at

the national level, will be much smaller than that of the LCAL estimator, based on the

domain calibration.
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5 EBLUP under the nested error model

The estimators described so far use mainly the information coming from the domain.

When the domain sample size ni is small, these estimators might be inefficient. Small

area (or indirect) estimation methods are designed to reduce the variance by increasing the

effective sample size, see the book by Rao & Molina (2015) for a comprehensive account of

small area estimation methods. In this section, we focus on model-based methods, which

provide estimators with good properties under the distribution induced by the model.

However, here we are also interested in their design properties.

We consider a very popular unit level model introduced by Battese et al. (1988) and

often called nested error model. Similary as model m2 in (16), this model assumes

a constant linear regression for all the population units, but allows for unexplained

heterogeneity between the domains by including random domain effects ui apart from

model errors eij. This model, denoted model m3, assumes

yij = x′ijβ + ui + eij, ui
iid∼ N(0, σ2

u),

eij
iid∼ N(0, σ2

e), j = 1, . . . , Ni, i = 1, . . . ,m, (18)

where area effects ui and errors eij are assumed to be mutually independent. We will

denote by θ = (β′, σ2
u, σ

2
e)
′ be the vector of unknown parameters. Note that setting

σ2
u = 0, we obtain model m2 given in (16).

Define the vector of random variables for domain i, yi = (yi1, . . . , yiNi
)′, and the

corresponding design matrix Xi = (xi1, . . . ,xiNi
)′. Then, in matrix notation the model is

yi
ind∼ N(Xiβ,Vi), Vi = σ2

u1Ni
1′Ni

+ σ2
eINi

, i = 1, . . . ,m, (19)

where 1k denotes a vector of ones of size k and Ik is the k×k identity matrix. Define also

the population vector y = (y′1, . . . ,y
′
m)′ and the matrix X = (X′1, . . . ,X

′
m)′. Then, the

model for the population vector is y ∼ N(Xβ,V), for V = σ2
uZZ′+σ2

eIN = diag1≤i≤m(Vi),

where Z = diag1≤i≤m(1Ni
).

In this section, we consider general population parameters defined as linear functions
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of the vector y, that is, we consider parameters of the type H = b′y, where b is a non-

stochastic vector of known elements. Let us decompose the population vector y into the

sample part ys, where the sample s is composed of the samples si drawn from the sets

of included units in each area UiI , and out-of-sample elements yr, and we decompose

accordingly the design matrix X and the covariance matrix V, that is,

y =

 ys

yr

 , X =

 Xs

Xr

 , V =

 Vs Vsr

Vrs Vr

 .

The linear parameter H = b′y can be also decomposed as H = b′sys + b′ryr. Under the

model (18), the best linear unbiased predictor (BLUP) of H is the model-unbiased linear

function of the sample data H̃ = α′sys that minimizes the model mean squared error

(MSE), MSEm3(H̃) = Em3(H̃ −H)2. The BLUP of H = b′sys + b′ryr is then given by

ĤBLUP (θ) = b′sys + b′r[Xrβ̃s + VrsV
−1
s (ys −X′sβ̃s)], (20)

where β̃s is the weighted least squares estimator of β, given by

β̃s =
(
X′sV

−1
s Xs

)−1
X′sV

−1
s ys. (21)

The BLUP of H given in (20) depends on the true values of the variance components

σ2
u and σ2

e , which are typically unknown. Replacing them by their respective consistent

estimators σ̂2
u and σ̂2

e , we obtain the so called empirical BLUP (EBLUP), and denoted

here as ĤEBLUP .

For the special case of a domain mean H = Ȳi = N−1i
∑Ni

j=1 yij, the vector b is given

by b = (0′N1
, . . . ,0′Ni−1

, N−1i 1′Ni
,0′Ni+1, . . . ,0

′
Nm

)′, where 0k denotes a vector of zeros of

size k. If the domain sampling fraction, ni/Ni, is negligible, the BLUP estimator of Ȳi

may be expressed as the weighted average

ˆ̄Y BLUP
i

∼= γis[ȳis + (X̄i − x̄is)
′β̃s] + (1− γis)X̄′iβ̃s, (22)
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where γis = σ2
u/(σ

2
u + σ2

e/ni) (Rao & Molina, 2015). Thus, for domains with large sample

size ni,
ˆ̄Y BLUP
i approaches the survey regression estimator ȳis+ (X̄i− x̄is)

′β̃s, whereas for

domains with small sample size ni,
ˆ̄Y BLUP
i borrows strength from the other domains by

approaching the regression-synthetic estimator X̄′iβ̃s. Replacing σ2
u and σ2

e by consistent

estimators σ̂2
u and σ̂2

e in the BLUP, we obtain the EBLUP of Ȳi, given by

ˆ̄Y EBLUP
i

∼= γ̂is[ȳis + (X̄i − x̄is)
′β̂s] + (1− γ̂is)X̄′iβ̂s, (23)

where γ̂is = σ̂2
u/(σ̂

2
u + σ̂2

e/ni) and β̂s is obtained by replacing respectively σ2
u and σ2

e by

σ̂2
u and σ̂2

e in β̃s.

The BLUP is unbiased under model m3 and optimal in the sense of minimizing

the MSE under that model. Let us now study its design properties. For this,

we consider the census regression parameter for the included units defined as BI =

(X′IV
−1
I XI)

−1X′IV
−1
I yI , where yI , XI and VI are the corresponding sub-vector and sub-

matrices of y, X and V, for the included units in the population. Again, we consider the

theoretical version of the BLUP defined in terms of BI ,

˜̄Y BLUP
i = γis[ȳis + (X̄i − x̄is)

′BI ] + (1− γis)X̄′iBI .

If each sample si is drawn from the corresponding UiI by simple random sampling without

replacement (SRSWOR), then Eπ(ȳis) = ȲiI and Eπ(x̄is) = X̄iI . Using these facts, it is

easy to calculate the design-bias of ˜̄Y BLUP
i , which is given by

Bπ( ˜̄Y BLUP
i ) = γis

NiE

NiI

[
(Ȳi − X̄′iBI)− (ȲiE − X̄′iEBI

)
] + (1− γis)(X̄′iBI − Ȳi).

This bias will be small if the same model (18) holds for the whole population or if the

ratio of excluded over included individuals is small. Indeed, if model (18) holds for all the

population units, then Em3(BI) = β, Em3(Ȳi) = X̄iβ and Em3(ȲiE) = X̄iEβ. Using these

results when taking expectation under the model m3 in (24), we get Bm3,π( ˜̄Y BLUP
i ) = 0.

In fact, the same result holds also under model m2.

Finally, if si is obtained by SRSWOR within UiI , the design-variance of the theoretical

14



BLUP estimator is given by

Vπ( ˜̄Y BLUP
i ) = γ2isVπ(ȳis − x̄isBI) =

γ2is
N2
i

Vπ(Ŷi − X̂′iBI).

Hence, if the census LS regression lines for the domains from model (6) are similar to

the national census WLS regression line from model (18), that is, if BI ≈ BiI , then the

variance of the EBLUP for Ȳi decreases that of the LCAL estimator obtained from (17)

by the factor γ2is.

6 EBP under the nested error model

For estimation of non-linear parameters, the BLUP has no meaning and we need to

resort to methods dealing with more general parameters, such as the best/Bayes predictor

(BP), see Molina & Rao (2010). Special non-linear parameters are poverty and inequality

indicators defined in terms of a welfare measure such as the FGT family of poverty

indicators due to Foster et al. (1984). The best predictor can also be used for estimation of

other characteristics such as median, quantiles or even the empirical distribution function

of the variable of interest, see Pratesi (2016). Additionally, it can be used for estimation

of totals and means of a target variable, when the dependent variable in the model is

a one-to-one transformation of this target variable (e.g. log or more general Box-Cox

transformations). Those transformations are typically applied in cases of non normality

or heteroscedasticity.

In this section, the target variable (e.g. the welfare measure) for the j-th unit in domain

i is denoted as vij and yij = T (vij) is a one-to-one transformation of it. We consider that

yij follows the nested error model (18). By the inverse transformation vij = T−1(yij), we

can express our target parameter (defined originally in terms of the target variables vij)

as a function of the vector y of model responses yij for the population units, H = h(y).

The best predictor (BP) of H = h(y) is defined as the function of the sample observations
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ys that minimizes the model MSE, and it turns out to be

H̃BP (θ) = Em3 [h(y)|ys;θ], (24)

where the expectation is taken with respect to the model distribution of yr|ys, which

depends on the true value of θ. H̃BP (θ) is unbiased with respect to the model (18),

regardless of the complexity of the function h(·) defining the target parameter. However,

it cannot be calculated in practice since model parameters θ are typically unknown. An

empirical best predictor (EBP) of H, denoted as ĤEBP , is then obtained by replacing

θ in H̃BP (θ) by a consistent estimator θ̂ as ĤEBP = H̃BP (θ̂). The EBP is not exactly

unbiased, but the bias arising from the estimation of θ is typically negligible when the

overall sample size n is large. For a linear parameter H = b′y, the EBP under the nested

error model with normality, obtained using as estimator of β the WLS estimator in (21)

equals the BLUP given in (20).

For some non-linear parameters where h(·) is too complex, the expectation defining the

EBP in (24) cannot be calculated analytically; in those cases, ĤEBP can be approximated

by Monte Carlo as proposed in Molina & Rao (2010). This is done by simulating, from the

model (18) fitted to the original sample, L replicates y
(`)
ij ; ` = 1, . . . , L of yij, j ∈ ri, where

ri are the non-sample units of area i, attaching the sample elements yij, j ∈ si to form the

population vector y(`), calculating the corresponding target parameter H(`) = h(y(`)) for

each ` = 1, . . . , L and, finally, averaging over the L replicates as ĤEBP = L−1
∑L

`=1H
(`).

Note that the EBP requires the values xij for all units in the population, and not only

for the included units. For further details on the calculation of EBP, see Molina & Rao

(2010).

7 MSE estimation

The EBP of Section 6 or the EBLUP in Section 5 are based on the nested error model

(18). Calibration estimators described in Section 4 are also assisted by linear regression

models. If we wish to have comparable accuracy measures, it seems reasonable to obtain
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the MSEs of all the estimators under a given regression model (model MSE), assuming that

the model holds for all the population units (included and excluded). Here we estimate

the model MSE using the bootstrap method proposed in Molina & Rao (2010), which

is based on the original parametric bootstrap method for finite populations of González-

Manteiga et al. (2008). According to this procedure, the bootstrap MSE of ĤEBP under

the nested error model (18) is obtained as follows: i) Fit the model (18) to the sample

data (ys,Xs), obtaining estimators β̂, σ̂2
u and σ̂2

e of β, σ2
u and σ2

e respectively. ii) For

b = 1, . . . , B, with B large, generate independently u
∗(b)
i

iid∼ N(0, σ̂2
u) and e

∗(b)
ij

iid∼ N(0, σ̂2
e),

j = 1, . . . , Ni, i = 1, . . . ,m. iii) For b = 1, . . . , B, construct a bootstrap population vector

y∗(b) with elements y
∗(b)
ij generated as

y
∗(b)
ij = x′ijβ̂ + u

∗(b)
i + e

∗(b)
ij , j = 1, . . . , Ni, i = 1, . . . ,m.

From the bootstrap population vector y∗(b), calculate the target bootstrap parameter

H∗(b) = h(y∗(b)), for b = 1, . . . , B. iv) From each bootstrap population vector y∗(b), take

the sample part y
∗(b)
s , where s is the original sample composed of the sub-samples si

from each domain i = 1, . . . ,m. Using also the population vectors xij, j = 1, . . . , Ni,

assumed to be known for all population units, calculate the bootstrap EBP of H, denoted

as ĤEBP∗(b), b = 1, . . . , B. v) A bootstrap MSE estimator for the EBP under model (18),

MSEm3(Ĥ
EBP ), is obtained as

mseB(ĤEBP ) =
1

B

B∑
b=1

(ĤEBP∗(b) −H∗(b))2. (25)

Bootstrap estimators of the MSE under the same model of the calibration estimators

can be obtained similarly. For the special case of a linear parameter, H = b′y, if β̂ is the

WLS estimator (21), then (25) is an estimator of MSEm3(Ĥ
EBLUP ). This näıve bootstrap

estimator of the model MSE is first-order unbiased in the sense that its model bias is

O(m−1), but not o(m−1). Bias corrections existing in the literature increase the variance

and may yield negative MSE estimates. In the literature, we cannot find bootstrap

estimators of the MSE that are strictly positive and also second-order unbiased. Thus,

17



we consider the naive bootstrap estimator (25), which cannot yield negative estimators

and performs well for moderate number of areas m.

8 Simulation experiments

8.1 Aims and general description

The purpose of these simulation experiments is to compare the performance of the

considered calibration and model-based methods for estimation in small domains when the

sample is drawn by cut-off sampling. Specifically, for the domain means Ȳi, i = 1, . . . ,m,

we will compare the two calibration estimators ˆ̄Y LCAL
i and ˆ̄Y LCALN

i , the näıve direct

estimator ˆ̄Y HA
i and the EBLUP under the nested error model ˆ̄Y EBLUP

i , under two different

scenarios. In the first scenario, we consider that the values of the target variable for all

units in the population are generated from the same model and, in the second, included

and excluded units are generated from different models.

Calibration estimators are design-consistent as the domain size ni increases even if the

corresponding model does not hold, but this is not the case for model-based estimators.

On the other hand, under the corresponding model, the EBLUP of a linear parameter

is approximately the most efficient linear and unbiased estimator, so making simulations

under a model would not provide any additional knowledge. The purpose here is to

see whether the considered model-based estimators also perform well with respect to the

(cut-off sampling) design. For this reason, we run design-based simulations by generating

one population vector y, keeping it fixed and repeatedly drawing cut-off samples. The

population vector y is generated from the nested error model in (18). To allocate the

units into the set of included and excluded units, we generate a random binary variable

cij for each unit j = 1, . . . , Ni and i = 1, . . . ,m. The units j with cij = 1 are assigned

to UiI and those with cij = 0 to UiE. In each Monte Carlo (MC) replicate, samples are

drawn, independently for each domain i, from the UiI units, i = 1, . . . ,m.
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8.2 Common regression model

We consider a population of N = 20, 000 individuals divided into m = 80 domains with

the same size Ni = 250, i = 1, . . . ,m. We consider three auxiliary variables, with values

generated as xijκ
iid∼ N(3, 2), κ = 1, 2, 3. The binary variables determining the allocation

of units in UiI or UiE for each domain i are generated independently as cij
ind∼ Bern(pij).

The probabilities pij = Pr(cij = 1) are considered to be related to the vector of auxiliary

variables xij = (xij1, xij2, xij3)
′ through a logit model, that is,

pij =
exp(x′ijζ)

1 + exp(x′ijζ)
, j = 1, . . . , Ni, i = 1, . . . ,m,

taking ζ = (0.75, 1, 1)′. With these model parameters, the units in UiI , that is, those with

cij = 1, for all i = 1, . . . ,m, represent roughly half of the population.

The values of the target variable yij are generated from the nested error model (18)

using xij = (xij1, xij2, xij3)
′ and taking β = (1, 1.5, 1)′, σ2

u = (0.75)2 and σ2
e = 42, which

leads to a determination coefficient R2 ≈ 0.5. Then, we draw K = 1, 000 Monte Carlo

samples s(k), k = 1, . . . , K. Each of these samples is obtained by drawing independent

domain sub-samples s
(k)
i of size ni from the units in UiI by SRSWOR, i = 1, . . . ,m.

The domain sample sizes are ni = 5, i = 1, . . . , 20, ni = 10, i = 21, . . . , 40, ni = 30,

i = 41, . . . , 60 and ni = 50, i = 61, . . . , 80. With the data from the k-th sample, we

compute the basic direct estimator, the estimators with calibration at the domain level

(LCAL) and at the population level (LCALN) and the EBLUP estimators of Ȳi. Weights,

hij and gij, in the calibration estimators (4) and (9) respectively are obtained using

the function calib from package sampling (Tillé & Matei, 2016) of R (R development

core team 2016). EBLUPs are obtained using R package sae (Molina & Marhuenda,

2015), which by default estimates the model parameters σ2
u, σ

2
e and β using the restricted

maximum likelihood (REML) method.

Let ˆ̄Yi be a generic estimator of Ȳi and ˆ̄Y
(k)
i its value obtained with k-th sample. We

evaluate the performance of estimators in terms of relative bias (RB) and relative root
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MSE (RRMSE) under the design, approximated empirically as

RBπ( ˆ̄Yi) = 100

K−1
K∑
k=1

( ˆ̄Y
(k)
i − Ȳi)

Ȳi
, RRMSEπ( ˆ̄Yi) = 100

√√√√K−1
K∑
k=1

( ˆ̄Y
(k)
i − Ȳi)2

Ȳi
.

Averages across domains of absolute RB and of RRMSE are also calculated as

ARB = m−1
m∑
i=1

|RBπ( ˆ̄Yi)|, RRMSE = m−1
m∑
i=1

RRMSEπ( ˆ̄Yi).

Figure 8.1 displays the percent RB (left) and RRMSE (right) for the considered

estimators of the mean Ȳi for each domain i (x-axis). These two plots show large design

bias and MSE for the basic direct estimators uniformly for all the domains. LCALN

estimator shows large bias for some domains, probably because this estimator does not

account for the domain effects. LCAL estimator performs globally the best in terms of

design bias, because it does account for the domain effects. However, the two calibration

estimators, but specially LCAL, obtain very large RRMSEs for the domains with the

smallest sample sizes (ni ≤ 20). EBLUP exhibits the best results in terms of design

RRMSE and at the same time keeping a small design bias. In fact, the difference between

EBLUP and LCAL estimators in terms of bias is pretty small.
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Figure 8.1: Percent RB (left) and RRMSE (right) of basic direct, LCAL, LCALN and EBLUP estimators
of the domain means, for each area.
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Table 8.1 displays ARB, RRMSE and % share of squared bias from the total design

MSE for the considered estimators. In this table, the basic direct estimator exhibits

a large design-bias, with a bias share of B2
π/MSEπ ≈ 100%, whereas the considered

calibration estimators and EBLUP have a considerably smaller bias. LCAL estimator has

the smallest average ARB. LCALN performs the best in terms of B2
π/MSEπ because of its

large MSE. Thus, we consider that LCAL performs better. On the other hand, EBLUP

clearly performs the best when accounting for both MSE and bias.

Table 8.1: Averages across areas of percent absolute RB and RRMSE, and average B2
π/MSEπ for basic

direct, LCAL, LCALN and EBLUP (in percentage).

Method ARB RRMSE B2
π/MSEπ

DIR 21.82 24.45 98.32
LCAL 2.96 27.33 2.48

LCALN 8.97 30.44 0.04
EBLUP 3.13 4.56 0.18

8.3 Different regression models

In this simulation study, we preserve the same population values and sampling scheme as

before. However, in this case, we consider that the values of the target variable for the

included and excluded units are generated from different models. Of course, this is not a

favorable scenario for the considered model-based estimators, but it may be realistic taking

into account that the assumed model cannot be checked for the excluded units. Thus,

instead of a constant β for all population units, we take βI = (1, 1.5, 1)′ for the included

units and βE = (0.5, 1.6, 0.5)′ for the the excluded ones. The values of the explanatory

variables, domain effects and error variances are generated the same as before, with σ2
u

and σ2
e . Again, we draw K = 1, 000 samples s(k) from those units with cij = 1 for each

domain i, by independent SRSWOR, with the same domain sample sizes ni. With the

sample data from the k-th sample, we compute basic direct, LCAL, LCALN and EBLUP

estimates of Ȳi.

Figure 8.2 shows the corresponding results. In this case, all the estimators are biased,

but the bias of the basic direct estimator becomes huge, exceeding 60% for some of the

domains. The bias of LCAL and EBLUP is kept relatively small for all the domains, but
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that of LCALN estimator is still very large in absolute value for some of the domains. In

absence of cut-off sampling, the calibration estimators are asymptotically design-unbiased

as the domain sample size ni increases, even if the considered model does not hold.

However, this is not true under cut-off sampling. Even under this unfavorable scenario,

EBLUP shows a moderate bias and performs clearly the best in terms of RRMSE.
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Figure 8.2: Percent RB (left) and RRMSE (right) of basic direct, LCAL, LCALN and EBLUP estimators
of the domain means, under different models for included and excluded units.

Table 8.2 reports ARB, RRMSE, together with the % share of squared bias from the

total design MSE. As already noted, the basic direct estimator exhibits a considerably

large design bias compared to the other estimators, whereas LCAL and EBLUP estimators

keep an ARB below 10%. LCALN displays the lowest B2
π/MSEπ because of a larger MSE.

Again, EBLUP shows the best performance in terms of efficiency, with an average RRMSE

also below 10%, while keeping a relatively small ARB.

Table 8.2: Averages across areas of percent absolute RB and RRMSE and average B2
π/MSEπ for basic

direct, LCAL, LCALN and EBLUP (in percentage), under different models for included and excluded
units.

Method ARB RRMSE B2
π/MSEπ

DIR 31.78 34.11 99.87
LCAL 8.47 30.83 77.43

LCALN 12.75 34.49 29.56
EBLUP 8.73 9.48 75.78

The simulation experiment was repeated taking a value of βE further away from
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βI , making the two regression models differ substantially. Results are not included due

to space constraints but, as one would expect, RB and RRMSE values increase for all

estimators, but conclusions are similar to the last experiment. The basic direct estimator

gets the largest RB, calibration estimators and EBLUP clearly reduce the bias of the basic

direct estimator due to cut-off sampling and, for the domains with the smallest sample

sizes, EBLUP gets the lowest RRMSE.

9 Estimation of total sales in Spanish provinces

Here we describe an application to the estimation of the total sales of a certain tobacco

product in the Spanish provinces. The available data set contains, for N = 12, 791

tobacco establishments (practically all of them) in m = 48 provinces from Spain (the

Canary Islands, Ceuta and Melilla are not included), the volume of purchases made

by each establishment of this product during the three months previous to November

2016 (zij, in euros). It also contains a variable indicating whether the establishment is

supplied with a device recording all the required information about each sale. Only the

establishments with larger sales are supplied with such a device. Those establishments

(in total n = 1, 842) are able to report proper data on sales and therefore the volume of

sales (vij, in euros) of the considered product in November 2016 is also included in the

data for those establishments.

We estimate the total sales Vi =
∑Ni

i=1 vij in each of the m = 48 provinces included

in the data using the basic direct, the selected calibration estimators and a model-based

estimator. Establishments j with both zij and vij available for a province i compose the

set of included units UiI , which equals the sample si in this case (there is no sampling

within UiI). Then, here the basic direct estimators are given by

V̂ HA
i = NiV̄iI , i = 1, . . . ,m, (26)

which have actually zero variance, but might be severely biased. However, the bias

cannot be estimated because there is no information from UiE. Since true values in
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real applications are not available and therefore real biases cannot be calculated, here we

will compare the estimators considering the set of establishments with sales recorded from

each province as a SRSWOR from that province. Note that this is the best scenario for

the basic direct estimator. Thus, for the basic direct estimator given in (26), considering

that the actual sample si = UiI is a SRSWOR from Ui, the variance equals the MSE (we

ignore the bias). A design-unbiased estimator of the MSE is then

mseπ(V̂i) = N2
i

s2i
ni

(
1− ni

Ni

)
, i = 1, . . . ,m,

where s2i = (ni − 1)−1
∑

j∈si(vij − v̄is)
2 is the sample variance of the sales for province i

and here ni = NiI , i = 1, . . . ,m.

For the estimators that consider a regression model, we first make a preliminary

descriptive analysis of the variables. Histograms of sales vij and of purchases zij show

right-skewed distributions for both variables. Moreover, a scatterplot of ordinary LS

residuals from a linear model for vij in terms of zij, against zij reveals a mild pattern of

heteroscedasticity. Transforming the sales with the squared root, that is, taking yij = v
1/2
ij

as response variable and xij = (1, xij)
′, with xij = z

1/2
ij as covariate seems to minimize

the problem. Accordingly, we will consider a nested error model (18) for the transformed

sales yij in terms of the transformed purchases xij, and EBPs of the total sales in each

province, Vi =
∑Ni

j=1 vij, will be computed based on this model. Note that, in terms of

the model responses yij, the total sales are given by Vi =
∑Ni

j=1 y
2
ij = h(yi). Then, the

EBP of Vi = h(yi) is given by

V̂ EBP
i = Em3 [h(yi)|yis; θ̂], i = 1, . . . ,m,

which can be calculated analytically or approximated by Monte Carlo simulation. We

estimate the model MSE of the EBP using the parametric bootstrap described in Section

7, taking H∗(b) = V
∗(b)
i and ĤEBP∗(b) = V̂

EBP∗(b)
i and considering that the assumed model

holds for included and excluded units. Residuals from this model are described below.

Note that the LCAL (or GREG) estimator is not defined for a non-linear function
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of the values of the response variable in the population units, such as the total sales

Vi =
∑Ni

j=1 y
2
ij after the square root transformation. Hence, here we calculate the GREG

based on the linear model (6) for the untransformed sales vij in terms of purchases zij

according to (5). As a measure of uncertainty of the GREG, to make it comparable with

that of the EBP, we estimated its model MSE through the same bootstrap procedure,

taking instead ĤEBP∗(b) = V̂
GREG∗(b)
i . The obtained bootstrap MSE estimator actually

includes the error due to the fact that the correct model is the one with transformed

variables.

Before comparing the estimates, let us analyze the residuals from the nested error

model (18), given by êij = yij−x′ijβ̂− ûi. Figure 9.1 shows a scatterplot of those residuals

against predicted values ŷij = x′ijβ̂ + ûi (left) and a histogram of residuals (right). We

can see a few negative outliers on the left plot, which agrees with a slightly larger left

tail in the histogram. Apart from that, residuals do not exhibit any remarkable pattern.

In fact, they appear to be very much concentrated around zero, which indicates a high

predictive power of the model.
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Figure 9.1: EBP residuals against predicted values (left), and histogram of EBP residuals (right).

Figure 9.2 shows the normal Q-Q plot of predicted area effects ûi. This plot supports

the normality of ûi except for one outlier appearing at the left tail of the distribution. This

point corresponds to the province with the smallest sample size (ni = 3 observations),

which suggests that the estimated random effect for that province, ûi, is not very reliable.
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Thus, we consider that the nested error model fits reasonably well the available data.
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Figure 9.2: Normal Q-Q plot of predicted province effects ûi.

We proceed now to compare the obtained estimates. Figure 9.3 left shows EBPs of the

total sales of the considered tobacco product for each province against direct estimates.

Province sample sizes are used as point labels. This plot indicates that the two types

of estimates are very similar for the provinces with small sample sizes. However, for

the two provinces with the largest sample sizes, the EBPs are slightly larger than the

corresponding direct estimates, which could be due to bias of the direct estimator. Figure

9.3 right displays EBPs against GREG estimates. The great similarity of GREG and

EBP estimates shown by this plot supports the fact that direct estimators might be the

ones that actually underestimate the total sales in this application.

Finally, we compare the three types of estimates of the total sales for each province

in Figure 9.4 left, showing the point estimates for each province (x axis), with provinces

sorted from smaller to larger sample sizes, and with sample sizes indicated in the x-axis

labels. The conclusions are the same as before; that is, the three types of estimates take

very similar values for all provinces except for a couple of provinces with the larger sample

sizes, where the basic direct estimator takes slightly smaller values (possibly understating

the total sales). Figure 9.4 (right) shows the estimated coefficients of variation (CV)

obtained ignoring the bias due to cut-off sampling. EBP estimators perform uniformly

better than the other estimators in terms of estimated CV, keeping the CV values below
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Figure 9.3: EBPs of total sales for each province against direct estimates (left) and against GREG
estimates (right).

10% for practically all provinces, whereas GREG estimator obtains CV values above 10%

for the provinces with the smallest sample sizes. We can see some peaks in the estimated

CVs for some provinces with not necessarily the smallest sample sizes. These larger CV

values are due to the presence of zero purchases and sales of the considered product in

many tobacco shops for those particular provinces (that particular product is not acquired

every month). Finally, it is clear that the direct estimator performs clearly the worst in

terms of efficiency.

Table 10 in Appendix 10 lists the resulting direct, calibration and EBP estimates of

the total sales of the product for each province accompanied with their estimated CVs.

This table confirms the better performance of EBP in terms of estimated CV under the

nested error model, specially for those provinces with small sample sizes. Finally, the

direct estimator performs poorly in terms of CV even if the bias due to cut-off sampling

is not accounted for.

10 Conclusions

Cut-off sampling is frequently used in business surveys, when drawing a representative

sample from the whole population entails a cost that does not really compensate the
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Figure 9.4: Direct, calibration and EBP estimates of total sales for each province (left) and corresponding
estimated coefficients of variation (right).

subsequent gain in accuracy. On the other hand, in some surveys, part of the target

population may not be actually available for sampling; that is, there may be population

sectors that cannot be represented in the sample. These situations appear more often

than desired, providing biased direct estimates as we have seen along this work.

We have studied the theoretical design properties of basic direct, calibration and

model-based estimators under cut-off sampling in small areas. Our results show that

EBLUP for a linear parameter, similarly as calibration estimators, reduce considerably

the bias due to cut-off sampling if the models for the included and excluded individuals

are reasonably similar. In terms of MSE, EBLUP performs significantly better than

calibration estimators for domains with small sample size.

In our simulation studies and in the application, we compared the proposed methods

by assuming that the model is the same for all units in the population (included or

excluded). The model assumption could be arguable because there is no way of checking

the model for the excluded units. In the case that estimation for the overall domain (and

not only for UiI) is required as is the case in this work, one will need to rely on subjective

prior information concerning the validity of the assumed model for the excluded units.

In any case, estimates can be considered just as indicatives of what could be the true

values in the case that the same model holds for all the domain units. In fact, the case
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of different models for included and excluded units was also analyzed in simulations. In

this case, model-based estimators remained to be the most efficient, with not much larger

bias than that of calibration estimators.

Finally, MSEs of calibration and model-based estimators are obtained under the model,

whereas for the direct estimator we have considered the design MSE. Design MSEs are

preferred by National Statistical Institutes because they do not assume that a model is

correct and therefore account for model failures. There is ongoing research on finding

stable design MSE estimates of model-based small area estimators, see Strzalkowska &

Molina (2017). We plan to use their ideas to find design MSE estimators of the considered

small area estimators in the context of cut-off sampling.
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Appendix: Estimates of total sales by provinces

Table .1: Basic direct, GREG and EBP estimates of total sales for the selected product and estimated
coefficients of variation (%) for each Spanish province (by increasing sample size).

PROVINCE ni V̂ HA
i V̂ GREG

i V̂ EBP
i cv(V̂ HA

i ) cv(V̂ GREG
i ) cv(V̂ EBP

i )

SORIA 3 293020.0 187824.9 213325.0 50.0 17.1 6.2

ZAMORA 7 932520.0 345095.8 454657.0 43.3 18.9 5.5

ALAVA 11 130083.6 119918.5 118835.3 23.7 14.7 9.7

ALMERIA 13 1870104.6 2407333.1 2272051.4 30.4 5.8 3.4

PALENCIA 14 626340.0 380367.4 409775.4 16.7 7.6 4.1

SALAMANCA 14 1265580.0 966094.1 1068230.6 21.9 7.3 3.9

AVILA 15 708696.0 392474.1 418917.2 19.5 9.2 5.0

LERIDA 17 817817.6 1011032.3 1014770.2 22.5 7.1 4.1

CIUDAD REAL 18 1764000.0 841228.2 939994.9 21.4 8.6 4.6

GUADALAJARA 18 463047.8 362148.3 363856.9 17.1 6.0 4.5

RIOJA 18 809900.0 622488.3 595178.6 18.2 5.2 3.7

SEGOVIA 19 610370.5 386734.4 402324.0 15.7 7.5 4.2

CACERES 20 4391826.0 2081619.7 2286462.0 20.4 5.6 2.7

GUIPUZCOA 20 181634.0 136700.0 156311.8 18.6 16.7 11.6

Continued on next page
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Table .1 – Continued from previous page

PROVINCE ni Ŷ DIR
i Ŷ GREG

i Ŷ EB
i cv(Ŷ DIR

i ) cv(Ŷ GREG
i ) cv(Ŷ EB

i )

HUESCA 22 377954.5 372101.3 371246.5 24.5 7.7 5.2

TERUEL 22 534417.3 446565.7 465643.3 19.9 6.0 4.3

CUENCA 23 588464.3 587005.5 586347.5 19.0 5.8 4.2

VALLADOLID 24 1609875.0 1210132.8 1188336.1 13.3 4.5 3.4

BURGOS 28 961645.7 708510.0 666698.1 18.5 4.9 3.4

CORDOBA 28 4457614.3 3367169.5 3312801.5 17.9 3.4 2.4

ORENSE 28 148577.1 88104.6 108428.9 17.4 19.0 10.5

LUGO 30 107213.3 92938.7 104233.7 16.9 13.8 10.7

ALBACETE 31 1654606.5 1115182.2 1073719.8 13.4 4.2 2.8

LEON 31 1528254.2 1274531.6 1270341.6 14.5 4.2 3.2

HUELVA 32 3031328.1 2838874.0 2816281.3 10.5 2.6 2.0

NAVARRA 33 1291343.0 956737.9 957660.4 13.2 4.4 3.4

PONTEVEDRA 33 159229.1 107198.9 138367.4 22.2 19.7 13.4

VIZCAYA 34 228618.8 183267.3 206304.6 13.1 13.2 9.1

TOLEDO 35 1619939.4 1529104.8 1539799.3 13.1 4.2 3.2

CADIZ 38 1851521.1 1585755.9 1620844.2 14.9 4.0 3.4

BADAJOZ 39 4571743.6 3439625.5 3457692.5 13.5 2.7 2.2

MALAGA 39 2499392.3 3188031.1 3237081.8 10.9 4.2 2.5

TARRAGONA 41 2872882.0 2690969.7 2656117.8 11.6 2.6 2.2

GRANADA 42 2123693.3 2221155.1 2241916.2 12.5 3.8 2.9

JAEN 43 1928229.8 1940379.2 1943101.0 15.8 3.2 2.7

ZARAGOZA 43 3750210.7 2564909.0 2578011.3 13.5 3.0 2.3

GERONA 45 2029222.2 1748165.7 1767490.3 10.4 3.2 2.5

MURCIA 51 6700070.6 7467465.0 7341434.6 8.7 2.2 1.6

BALEARES 52 849950.8 650012.6 694416.3 21.5 6.1 4.7

CANTABRIA 52 285632.3 204947.7 226163.1 10.7 9.5 6.4

ASTURIAS 55 2113034.5 1702020.8 1661932.8 13.5 3.6 3.1

CASTELLON 55 1605604.4 1526618.1 1530394.2 8.9 2.5 2.2

SEVILLA 55 7458078.2 6878368.2 6857368.8 11.0 2.0 1.7

CORUNA 62 340200.0 217028.5 206041.8 20.2 10.9 10.2

ALICANTE 66 8324589.1 8390895.3 8240996.9 9.2 1.8 1.6

VALENCIA 113 7671137.7 7209128.2 7153290.2 6.3 1.7 1.4

MADRID 123 11483342.8 12892853.8 12892305.0 6.2 1.7 1.5

BARCELONA 187 22356500.5 24990558.9 24797372.9 4.8 1.0 0.9
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Santamaŕıa, L. (2008). Bootstrap mean squared error of a small area eblup. Journal

of Statistical Computation and Simulation 78, 443–462.
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