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1 Introduction

Cities are the most unequal places in America (Moretti 2013, Baum-Snow and Pavan

2013, Chetty and Hendren 2018), and increasingly so nowadays compared to the last few

decades (Watson 2009). Income inequalities that arise from differences across neigh-

borhoods and administrative areas of the city have received substantial attention in

the literature (Massey and Eggers 1990, Jargowsky 1997, Reardon and Bischoff 2011).

Much less is known about the extent of income inequality in the neighborhood (see

Hardman and Ioannides 2004, Shorrocks and Wan 2005, Dawkins 2007, Wheeler and

La Jeunesse 2008, Kim and Jargowsky 2009). The degree of inequality and poverty within

the neighborhood of residence has been found to have an independent effect on important

dimensions of quality of life, such as labor market attachment (Conley and Topa 2002),

well-being (Ludwig et al. 2012) health (Ludwig et al. 2011, Ludwig et al. 2013, Chetty

et al. 2016) and intergenerational mobility (Andreoli and Peluso 2018).

Existing measures of neighborhood inequality either allow to identify places in the city

where the poor population is over-represented compared to the city average (Reardon and

Bischoff 2011, Iceland and Hernandez 2017), or rely on variance decompositions methods

based on administrative partitions of the urban territory (for instance, by census tract

or school district) to measure value the contribution of inequality across areas to total

inequality (Wheeler and La Jeunesse 2008, Shorrocks and Wan 2005). These approaches to

spatial inequality raise concerns on their normative validity, as well as on their reliability

from a measurement perspective, insofar inequality indices based on the urban space

partition are inevitably affected by the Modifiable Areal Unit Problem (Openshaw 1983,

Wong 2009).

In a recent contribution, Andreoli and Peluso (2018) have developed a new spatial

measures of neighborhood inequality, the NI index, that addresses these critics by relying

on the notion of individual neighborhood (Galster 2001, Clark et al. 2015), rather than

administrative neighborhood, to estimate neighborhood inequality. The index is defined

as follows. Consider a population of n ≥ 3 individuals, indexed by i = 1, ..., n, and let yi

be the income of individual i and y = (y1, y2, ..., yn) the sample income distribution with
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average µ > 0. The authors assume that information on incomes comes with information

about their location on the city map. In this way, they can construct individual neigh-

borhoods di, gathering nid individuals living within a distance range d from any given

location i. There are as many individual neighborhoods as individuals in the city, and

each individual neighborhood can be characterized by an average income µid =
∑

j∈di
yj

nid
,

and a degree of inequality ∆i(y, d) = 1
µid

∑
j∈di

|yi−yj |
nid

. The NI index measures spatial

inequality in the city as the degree of inequality in the average individual neighborhood.

It is defines as

NI(y, d) =
1

2

n∑
i=1

1

n
∆i(y, d), (1)

and it is shown to have solid normative and statistical properties (it can be related, for

instance, to the probabilistic interpretation of the Gini coefficient in Pyatt 1976).

The NI index depends on d, which is a parameter chosen by the researcher. The plot

of NI(y, d) against d defines a neighborhood inequality curve. The curve is expected to be

close to the origin when d = 0 (individual neighborhoods are very small) or when there is

high spatial dependence in incomes, with high and low income households segregated in

space. When d reaches the size of the city, each individual neighborhood spans the whole

city. In this case, neighborhood inequality converges to citywide inequality measured by

the Gini index and the NI curve is flat. Andreoli and Peluso (2018) make use of the NI

curve to assess neighborhood inequality in American metro areas. Their findings suggest

that neighborhood inequality in American cities is: i) high and close to citywide inequality

even when d is small; ii) on the rise since 1980s; iii) a predictor of children future income

opportunities related to the place they were exposed to during youth (as estimated in

Chetty and Hendren 2018).

These findings are based on the American census (STF 3A files) and the Community

Survey (ACS) data. Both data sources only report statistical tables of demographics

and of population counts at given income cutoffs that are representative at the block

group level, the finest available statistical partition of the American territory. Incomes in

the ACS are estimated from 5-years rotational samples based on 2010 census population

counts. There is therefore a possibility that the NI index is imprecisely estimated and that
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the trends of growing NI trends observed in Andreoli and Peluso (2018) are not robust

from a statistical perspective.

In this paper, I derive minimum bounds for the standard error of the NI index and

use these bounds to infer about various forms of dominance in NI curves, inspired by the

stochastic dominance testing approach (Bishop, Chakraborti and Thistle 1989, Dardanoni

and Forcina 1999, Andreoli 2018). I utilize some properties of the ratio estimators in

Goodman and Hartley (1958) to derive bounds for the NI index variance when the data

generating process is not i.i.d., accommodating for the possibility of spatial dependence.

I then show (Sections 2 and 3) that under fairly common assumptions in spatial statistics

(Cressie 1991, Chilès and Delfiner 2012), the estimators of the NI index standard error can

be identified in terms of the distribution of locations on the map (non stochastic) and of

the variogram, a measure of spatial dependence of the data (Matheron 1963). I use these

results in Section 4 to infer about changes in NI in Chicago, IL, where I find statistical

support for findings in Andreoli and Peluso (2018). A simulation study in Section 5

confirms the qualities of the standard error estimator I propose. Section 6 concludes.

2 Statistical properties of the NI index

2.1 Setting

Let S denote a random field. The spatial process {Ys : s = 1, . . . , n} with s ∈ S is jointly

distributed as FS . This process is a collection of random variables Ys located over the

random field S, which serves as a model of the relevant urban space. The joint distribu-

tion function FS combines information about the marginal income distributions in each

location and the degree of spatial dependence of incomes on S. Through geolocalization,

it is possible to compute the distance “||.||” between locations s, v ∈ S. Let ||s− v|| ≤ d

indicate that the distance between the two locations is smaller than d, or equivalently

v ∈ ds. The cardinality of the set of locations ds is nds , while n is the total number of

locations. The observed income distribution y is a particular draw from FS , where only

one income realization is observed in location s.
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Assume that data come equally spaced on a grid, so that for any two points s, v ∈ S

such that ||v−s|| = h we write v = s+h. The process distributed as FS is said to display

intrinsic (second-order) stationarity (see Chilès and Delfiner 2012) if E[Ys] = µ, V ar[Ys] =

σ2 and Cov[Ys, Yv] = c(h) where the covariance function is isotropic and v = s+h. Under

these circumstances, let V ar[Ys+h − Ys] = E[(Ys+h − Ys)2] = 2σ2 − 2c(h) = 2γ(h) denote

the variogram of the process at distance range h (Matheron 1963). The function 2γ(h) is

informative of the correlation between two random variables that are exactly d distance

units away one from the other. The slope of the graph of the variogram function displays

the extent to which spatial association affects the joint variability of the elements of the

process. In general, 2γ(d) → 0 as d approaches 0, indicating that random variables that

are very close in space tend to be strongly spatially correlated and variability in incomes

at the very local scale is small. Conversely, 2γ(d) → 2σ2 when d is sufficiently large,

indicating spatial independence between two random variables Ys and Yv far apart on the

random field.

Noticing that E[Ys+h · Ys] = σ2 − γ(h) + µ2, the covariance between differences in

random variables can be written as Cov[(Ys+h1−Ys), (Yv+h2−Yv)] = γ(s+h1−v)+γ(s−

(v + h2))− γ(s− v)− γ(s+ h1 − (v + h2)) as in Cressie and Hawkins (1980) and Cressie

(1991). Sine data are assumed to occur on a transect, let denote by s and v the position

on the transect, and consider s− v = h ≥ 0 where h indicates that the random variables

are located within distance range h. The transect can be directional, implying that

negative and positive distances carry relevant information when aggregated. Let δp = 1

whenever hp > 0 and δp = −1 whenever hp < 0, p = 1, 2. Under these circumstances:

Cov[(Ys+h1−Ys), (Yv+h2−Yv)] = γ(|h+δ1h1|)+γ(|h−δ2h2|)−γ(|h|)−γ(|h+δ1h1−δ2h2|).

Consider further the possibility of abandoning directional information by assuming that

locations are arranged so that h1 > 0 and h2 > 0 and adopt the convention that γ(−h) =

γ(h) (i.e. only the order but not the direction on the transect matters), then the covariance

is identified as Cov[(Ys+h1−Ys), (Yv+h2−Yv)] = γ(h+h1)+γ(h−h2)−γ(h)−γ(h+h1−h2)

Let now introduce one additional distributional assumption: Ys is gaussian with mean

µ and variance σ2. The random variable (Ys+h−Ys) is also gaussian with variance 2γ(h),
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which implies |Ys+h − Ys| is folded-normal distributed (Leone, Nelson and Nottingham

1961) and its first and second moments depend exclusively on the variogram, having

expectation E[|Ys+h−Ys|] =
√

2/πV ar[Ys+h − Ys] = 2
√
γ(h)/π and variance V ar[|Ys+h−

Ys|] = (1− 2/π)2γ(h).

These results turn out to be useful in characterizing the NI index.

2.2 Properties

The NI index of the spatial process FS can be written in terms of first order moments of

the random variables Ys as follows:1

NI(FS , d) =
∑
s

∑
v∈ds

1

2nnds

E[|Ys − Yv|]
E[Yv]

.

The degree of spatial dependence represented by FS enters in the NI formula through

the expectation terms conditional on S. Consider first the case in which FS displays

no spatial dependence in incomes, that is, the random variables Ys and Yv are i.i.d. for

any s, v ∈ S. One direct implication is that NI(FS , d) = E[|Ys−Yv |]
E[Yv ]

, which coincides with

the definition of the standard Gini inequality coefficient (see for instance Muliere and

Scarsini 1989).

If, instead, spatial dependence is at stake, then the expectation E[|Ys − Yv|] varies

across locations and cannot be identified and estimated from the observation of just one

data point in each location. More structure is needed.

I maintain the assumption that the spatial process is defined on the transect with

equally spaced lags. For given d, I can thus partition the distance spectrum [0, d] into

Bd ordered intervals of fixed size d/Bd. Each interval is denoted by the index b with

b = 1, . . . , Bd. I further denote with dbi the set of locations at interval b (and thus

distant b · d/Bd from si) within the range d from location si. The cardinality of this set

is ndbi
≤ ndi

≤ n. Assuming additionally the intrinsic stationarity of FS and normality,

1Biondi and Qeadan (2008) use a related estimator to assess dependency across time in paleorecords
observed in a given location.

6



the NI index rewrites:

NI(FS , d) =
∑
i

∑
j∈di

1

2nndi

E[|Ysj
− Ysi

|]
µ

=
∑
i

∑
j∈di

1

2nndi

√
4γ(||sj − si||)/π

µ

=
∑
i

1

n

Bd∑
b=1

ndbi

ndi

∑
j∈dbi

1

2ndbi

√
4γ(si + b− si)/π

µ

=
1

2

Bd∑
b=1

(∑
i

ndbi

nndi

)√
4γ(b)/π

µ
, (2)

This result, derived in Andreoli and Peluso (2018), shows that the NI index is fully

characterized by the distribution of locations on the city map (non stochastic) and the

degree of spatial dependence measured by the variogram. I exploit this property to obtain

estimators for the NI index standard errors.

3 Variance bounds for the NI index

3.1 Main result

I derive minimum bounds for the SE of the NI index under three assumptions: 1) the

underling spatial process is stationary; 2) the spatial process occurs on a transect at

equally spaced points; 3) each element of the process is gaussian with expectation µ and

variance σ2.

Let assume that the random field S is limited to n locations. For simplicity, I denote

these locations by i such that i = 1, . . . , n and {Yi : i = 1, . . . , n}. The joint distribution

of the process is F . Each location has weight wi ≥ 0 with w =
∑

iwi, which might

reflect the underling population density at a given location. These weights are assumed

to be non-stochastic. The first implication is that, asymptotically, the random variable

µid =
∑

j∈di

wj∑
j∈di

wj
Yj is equivalent in expectation to µ̃ =

∑
i

wi∑
i wi
Yi, i.e., E[µ̃] = µ. The

second implication is that the spatial correlation exhibited by F is stationary in d and
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can be represented through the variogram of F , denoted 2γ(d).

An asymptotically equivalent version of the weighted NI index of the process dis-

tributed as F is

NI(F , d) =
1

2µ

n∑
i=1

∑
j∈di

wiwj
2w

∑
j∈di

wj
|Yi − Yj| =

1

2µ
∆d. (3)

The NI index can thus be expressed as a ratio of two random variables. Asymptotic

approximations for the SE of ratios of random variables have been developed in Goodman

and Hartley (1958, p. 496) and later by Koop (1964) and Tin (1965). I use these results

to obtain minimum variance bounds for the NI index in (3) as follows:

V ar [NI(F , d)] =
1

4nµ2
V ar[∆d] +

(NI(F , d))2

nµ2
V ar[µ̃]−

NI(F , d)

nµ2
Cov[∆d, µ̃] +O(n−2), (4)

where the SE approximation is SEd =
√
V ar [NI(F , d)] at any d. The approximation

converges quickly when the number of locations is large, as it the case in applications

based on census micro data, and holds when income realizations are spatially correlated.2

As suggested in Tin (1965), I use plug-in estimators for the SE.

The three assumptions stated above allow to identify the different elements in (4).

Let scalars m, b, b′ identify distances on the transect. Under assumption 1) and 2) the

2The sample counterpart of the NI index in (3) can be interpreted as a U-statistic. As shown by
Hoeffding (1948), the variance bound in (4) converges to the asymptotic unbiased estimator of the NI
index variance when the income observations are i.i.d. Under this specific circumstance, asymptotic
normality is also granted both with simple and with complex sampling design (Xu 2007, Davidson 2009).
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variance of µ̃ writes

V ar[µ̃] =
∑
i

wi
w

∑
j

wj
w
E[YiYj]− µ2

=
∑
i

wi
w

B∑
m=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj
c(||si − sj||) (5)

=
B∑

m=1

(∑
i

wi
w

∑
j∈dmi

wj

w
(σ2 − γ(m))

)
(6)

= σ2 −
B∑

m=1

ω(m)γ(m), (7)

where (7) is obtained from (6) by renaming the weight scores so that
∑B

m=1 ω(m) = 1,

and by using the definition of the variogram and the fact that sj = si +m.

The second variance component of (4) can be written as follows:

V ar[∆d] =
n∑
i=1

∑
j∈di

wiwj
w
∑

j∈di
wj

n∑
`=1

∑
k∈d`

w`wk
w
∑

k∈d`
wk
E[|Yi − Yj||Y` − Yk|]

−

(∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

)2

.

The first component of V ar[∆d] cannot be further simplified, as the absolute value oper-

ator enters the expectation term in a multiplicative way. Under assumption 3), the ex-

pectation can be simulated, since the random vector (Yj, Yi, Yk, Y`) is jointly normally dis-

tributed with expectations (µ, µ, µ, µ) and variance-covariance matrix Cov[(Yj, Yi, Yk, Y`)],

with:

Cov[(Yj, Yi, Yk, Y`)] =


σ2 c(||sj − si||) c(||sj − sk||) c(||sj − s`||)

σ2 c(||si − sk||) c(||si − s`||)

σ2 c(||sk − s`||)

σ2

 .

Assume further that data occur on a transect with equally spaced intervals sj−si = b ≥ 0

and sk − s` = b′ ≥ 0 for the positive integers b ≤ Bd and b′ ≤ Bd. I aslo take the
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(unrestrictive) convention that si − s` = m with 0 ≤ m ≤ B. I can hence express the

variance-covariance matrix as a function of the variogram

Cov[(Yj, Yi, Yk, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m+ b− b′) σ2 − γ(m+ b)

σ2 σ2 − γ(m− b′) σ2 − γ(m)

σ2 σ2 − γ(b′)

σ2

 .

The expectation E[|Yi − Yj||Y` − Yk|] can be simulated from a large number S (with

S = 1, 000) of independent draws (y1s, y2s, y3s, y4s) with s = 1, . . . , S, from the random

vector (Yj, Yi, Yk, Y`). The simulated expectation is a function of the variogram parameters

m, b, b′ and d and of σ2. It is denoted θ(m, b, b′, d, σ2) and estimated as follows:

θ(m, b, b′, d, σ2) =
1

S

S∑
s=1

|y2s − y1s| · |y4s − y3s|.

With some algebra, and using the fact that E[|Y` − Yi|] = 2
√
γ(m)/π for locations ` and

i at distance m ≤ B one from each other, it is then possible to write the term V ar[∆d]

as follows:

V ar[∆d] =
B∑

m=1

Bd∑
b=1

Bd∑
b′=1

ω(m, b, b′, d)θ(m, b, b′, d, σ2)

−4

(
Bd∑
m

ω(m, d)
√
γ(m)/π

)2

. (8)

In the formula, ω(m, b, b′, d) =
∑

i
wi

w

∑
j∈dbi

wj∑
j∈di

wj

∑
`∈dmi

w`

w

∑
k∈db′`

wk∑
k∈d`

wk
and ω(m, d) =∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
are calculated as before.

The third component of (4) is the covariance term. It can also be written as a function

of the variogram. To show this, I maintain the convention that si − s` = m ≥ 0 and
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sj − si = b ≥ 0. This gives the following equivalence:

E[|Yj − Yi|Y`] = E[|YjY` − YiY`|] = E[YjY`]− E[YiY`]− 2E[min{YjY` − YiY`, 0}]

= c(||sj − s`||) + µ2 − c(||si − s`||)− µ2 − 2E[min{YjY` − YiY`, 0}]

= γ(m)− γ(m+ b)− 2E[min{YjY` − YiY`, 0}]. (9)

The expectation E[min{YjY` − YiY`, 0}] is non-liner in the underlying random variables.

Under the Gaussian assumption, the expectation can be simulated from a large number

S (with S = 1, 000) of independent draws (y1s, y2s, y3s) with s = 1, . . . , S, from the

random vector (Yj, Yi, Y`), which is normally distributed with expectations (µ, µ, µ) and

variance-covariance matrix Cov[(Yj, Yi, Y`)]. As the process occurs on the transect, the

variance-covariance matrix writes

Cov[(Yj, Yi, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m+ b)

σ2 σ2 − γ(m)

σ2


for given m, b and d. The resulting simulated expectation is denoted φ(m, b, d, σ2) and

computed as follows:

φ(m, b, d, σ2) =
1

S

S∑
s=1

min{y1sy3s − y2sy3s, 0}.

Based on this result, the covariance term in (4) becomes:

Cov[∆d, µ̃] =
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj

∑
`

w`
w
E[|Yj − Yi|Y`]

−µ
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

=
B∑

m=1

Bd∑
b=1

ω(m, b, d)
[
γ(m)− γ(m+ b)− 2φ(m, b, d, σ2)

]
−2µ

Bd∑
m=1

ω(m, d)
√
γ(m)/π. (10)
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The weights in (10) coincide respectively with ω(m, b, d) =
∑

i
wi

w

∑
`∈dmi

w`

w

∑
j∈dbi

wj∑
j∈di

wj

and ω(m, d) =
∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
.

A consistent estimator for the SE, denoted ŜEd, is obtained by plugging into (4) the

empirical counterparts of the variogram and the lag-dependent weights, using the formulas

in (7), (8) and (10).

3.2 Implementation

Consider a sample of size n. Income realizations are denoted yi, with i = 1, . . . , n. The

income vector y = (y1, . . . , yn) is a draw from the spatial random process {Ys : s ∈ S},

where a location s identifies a precise point on a map. Information about location (latitude

and longitude) of an observation i is denoted by si ∈ S. Distance measures between

locations can be easily constructed based on the geodesic formula. Furthermore, observed

incomes are associated with weights wi ≥ 0 and are indexed according to the sample units,

with w =
∑

iwi. It is often the case that the sample weights give the inverse probability

of selection of an observation from the population.

The mean income within an individual neighborhood of size d, denoted µid, is estimated

by µ̂id =
∑n

j=1 ŵjyj where

ŵj :=
wj · 1(||si − sj|| ≤ d)∑
j wj · 1(||si − sj|| ≤ d)

so that
∑

j ŵj = 1, and 1(.) is the indicator function. The estimator of the average

neighborhood mean income is instead µ̂d =
∑n

i=1
wi

w
µ̂id. The estimator of the NI index,

denoted N̂I(y, d), is the sample weighted average of the mean absolute deviation of the

income realization in location si from the income realization in any other location sj such

that ||si − sj|| ≤ d. Formally

N̂I(y, d) =
n∑
i=1

wi
w

1

2µ̂id

n∑
j=1

ŵj |yi − yj|,

where ŵj is defined as above.
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The estimation is conditional on d, which is a parameter under control of the re-

searcher. The distance cutoff d is conventionally reported in miles and is meant to capture

a continuous measure of the size of an individual neighborhood. In empirical applications,

one can estimate as many values of d as there are pairs of observations in distinct locations

on the maps. For computational reasons, however, the NI index and its SE are estimated

only for a finite number of distance cutoffs, identifying intervals of fixed length. The

maximum number of cutoffs indicates the point at which distance between observations

is large enough that the NI index converges to the Gini index and its SE is constant.

For a given neighborhood of size d, I partition the distance interval [0, d], defining the

size of the individual neighborhood, into K intervals d0, d1, . . . , dK of equal size, with

d0 = 0. I always use dk to denote the distance between any pair of observations i and j

located at distance dk−1 < ||si − sj|| ≤ dk one from the other. The pairs (dk, N̂I(y, dk))

for any k = 1, . . . , K can be hence plotted on a graph. The curves resulting by linearly

interpolating these points are the empirical equivalent of the neighborhood inequality

curves.

A plug-in estimator for the asymptotic standard error of the GINI indices can be

derived under the assumptions listed in the previous sections. The SE estimator crucially

depends on four components: (i) the consistent estimator for the average µ̃, denoted µ̂,

which coincides with the sample average; (ii) the consistent estimator for variance σ2,

denoted σ̂2, which is given by the sample variance; (iii) the consistent estimator for the

variogram; (iv) the estimator of the weighting schemes.

Empirical estimators µ̂ and σ̂2 are standard. The robust non-parametric estimator

of the variogram proposed by Cressie and Hawkins (1980) can be used to assess the

pattern of spatial dependency of georeferenced data on income realizations. The empirical

variogram is defined for given distance ranges, meaning that it produces a measure of

spatial dependence among observations that are located exactly at a given distance range

one from the others. I use b = 1, . . . , B to partition the empirical distance range between

any given pair of locations into equally spaced lags. Then, I estimate the variogram on

each of these lags. This means that 2γ(b) refers to the correlation between incomes placed
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at distance lags of exactly b intervals, each of size d/B.

It is understood that the size of the sample is large compared to B, in the sense that

the sampling rate per unit area remains constant when the partition into lags becomes

finer. This assumption allows to estimate a non-parametric version of the variogram

at every distance cutoff. Following Cressie (1991), I use weighted least squares to fit a

theoretical variogram model to the empirical variogram estimates. The theoretical model

is a continuous parametric function mapping distance into the corresponding variogram

level. In the application, I use the spherical (semi)variogram model (see Cressie 1985),

denoted γ(h) = α+ β(3/2 min{h/a, 1} − 0.5 min{h/a, 1}), where α, β are parameters to

be estimated and a is the so-called range level: beyond distance a, the random variables

Ys+h and Ys with h > a are assumed to be spatially uncorrelated. The variogram satisfies

the condition γ(0) → 0 and γ(a) = σ2. The max number of intervals B is set so that

d = 2a. The estimated parameters are then used to draw predictions for the estimator

2γ̂ of the variogram at each distance cutoff.3 The predictions are then plugged into the

SE estimators of the NI index.

Finally, SE estimation requires to produce reliable estimators of the weights ω. These

are non-parametrically identified from the formulas provided above. In some cases, how-

ever, computation of the exact weights requires several iterations across observations.

The overall computation time thus increases exponentially in the number of observations

and the procedure becomes quickly unfeasible. I propose alternative, feasible estimators

for these weights, denoted ω̂, that are expressed as linear averages. The computational

time is, nevertheless, quadratic in the number of observations as it requires to construct

a routine that first computes weights estimators for each observation separately, and the

averages across all observations at given distance cutoffs.

I consider here only the weights that appear in the estimators ŜEd in (4) that cannot

be directly inferred (i.e., are computationally unfeasible) from observed weights. For a

given observation i, define w(b, i) =
∑

j∈dbi
wj for any ring b = 1, . . . , Bd, . . . , B of radius

db the weight associated with income realizations that are exactly located b lags away from

3Cressie (1985) has shown that this methodology leads to consistent estimates of the true variogram
function under the stationarity assumptions mentioned above.
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i. Then, denote w(d, i) =
∑

j∈di
wj =

∑Bd

b=1w(b, i). I consider the following estimators

for (8) : ω̂(m, b, b′, d) =
∑
i

wi
w

w(b, i)

w(d, i)

w(m, i)

w

w(m+ b′, i)

w(m+ d, i)
;

for (10) : ω̂(m, b′, d) =
∑
i

wi
w

w(m, i)

w

w(b′, i)

w(d, i)
.

To compute these weights, each observation i has to be first assigned with the total weight

w(b, i) of those observations j 6= i that are located exactly at distance b from i. Then,

ω̂(m, b, b′, d) and ω̂(m, b′, d) are obtained by averaging these weights across i’s. The key

feature of these estimators is that weights of observations occurring at distance b′ from an

observation located at distance m from i are estimated by averaging across all observations

the relative weight of observations at distance m+ b′ from i.

3.3 Hypothesis testing

The NI index and the implied NI curves can be used to assess patterns and trends of

neighborhood inequality. Various hypotheses are of interest. One might be interested in

assessing the extent at which inequality in the average individual neighborhood of size

d is different from citywide inequality measured by the Gini index. The relevant null

hypothesis is H1
0 : NI(y, d) = G(y) against an unrestricted alternative (reflecting the

fact that neighborhood inequality can be either larger or smaller than citywide inequality).

A second concern may be on the way the patterns of neighborhood inequality are sensible

to the size of individual neighborhoods. In presence of income sorting, one expects that

inequality within neighborhoods of small size to be, on average, smaller than inequality

in neighborhoods of larger size. Consequently, the NI curve is expected to be increasing

in the individual neighborhood size. The relevant null here is H2
0 : NI(y, d′) = NI(y, d)

for d′ > d, to be tested against a restricted alternative. Rejecting both null hypotheses

H1
0 and H2

0 gives statistical support for the existence of a neighborhood component in the

urban income distribution.

It is also of interest to study the dynamics of neighborhood inequality across income

distributions yt and yt′ . For a given size d of the individual neighborhood, the relevant
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null hypothesis is H3
0 (d) : NI(yt, d) = NI(yt′ , d) against an unrestricted one. A growth or

decline in neighborhood inequality is robust when it involves a dominance in neighborhood

inequality curves. In this case, the relevant null hypothesis is: H3
0 : H3

0 (d) ∀d against

an unrestricted one. As for H1
0 and H2

0 , the null hypotheses are expressed in the form of

equalities to stress that one is compelled to conclude in favor of increasing or decreasing

neighborhood inequality only if there is strong evidence against the null hypothesis.

The acceptance regions for the null hypotheses H1
0 , H2

0 and H3
0 (d) can se constructed

using the confidence bounds implied by the SE approximations provided above. Un-

der the normality assumption, confidence bounds for the NI index based on individual

neighborhoods of size d take the form N̂I(y, d) ± zαSEd, where N̂I is a consistent esti-

mator of the NI index and zα is the standard normal critical value for confidence level

1 − α (for instance, 95%). To test H3
0 , it is sufficient to plot the confidence bounds of

NI(yt′ , d)−NI(yt, d) against d and verify that the horizontal orthant lies homogeneously

in the implied rejection region.

4 Inference for patterns and trends of neighborhood

inequality in Chicago, IL, 1980-2014

Andreoli and Peluso (2018) provide robust evidence that neighborhood inequality is high

in large American metro areas and almost converges to citywide income inequality, even

when estimates are based on individual neighborhoods of small size (smaller than half a

mile). They also find that neighborhood inequality has increased substantially over the

last 35 years in virtually all largest cities. Are these patterns producing reliable evidence

for the population? Is the growth in neighborhood inequality statistically significant?

I use the same data as in Andreoli and Peluso (2018) to draw inference about NI curves

for the Metropolitan Statistical Area of Chicago, IL in the years 1980, 1990, 2000 and

2014.4 Chicago has experienced large demographic growth over the last 35 years, with

4Data for 1980-200 are from the decennial US Cesus, STF 3A files. Data for 2014 are from the 2010-
2014 sample estimates of the American Community Survey. In all cases, data on the spatial distribution
of incomes in Chicago are reported in the form of tables, representative of the population living within
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Figure 1: Trends in neighborhood inequality in Chicago, IL

(a) (b)

(c) (d)

(e) (f)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level.

a given spatial partition. I use the census block group partition. For each block group in every year
I obtain a synthetic equivalent gross household income distribution, reporting for each income level
(estimated from a distribution model) a population weight. See Andreoli and Peluso (2018) for details
about estimation of incomes and equivalence scales. I use these estimates as observations, each is assumed
to be located at the block group’s centroid. Distances can be recorded from georeferenced maps.
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the number of inhabited census blocks (each gathering approximately 1000 households)

increasing from 3756 in 1980 to more than 4700 in 2014. The growth in average equivalent

income (in nominal terms), ranging from $13,794 in 1980 to $55,710 in 2014, has been

followed by an expansion of inequality. The Gini index for the citywide income distribution

has evolved steadily, from 0.434 in 1980 to 0.461 in 1990, then to 0.473 in 2000 and finally

0.486 in 2014, reflecting both demographic and economic changes.

Neighborhood inequality in Chicago mirrors the trends observed in other large Amer-

ican metro areas. As shown in panel a) of figure 1, in each year the NI index is high and

close to the level of the citywide Gini index even in neighborhoods of relatively small size.5

The NI estimates are always significant at all distance ranges. As table 1 shows (panel

A), the hypothesis H1
0 is rejected with p-values always close to zero when the individual

neighborhood size is smaller than 5 miles. When the individual neighborhood is of 12

miles or above, neighborhood inequality is statistically indistinguishable from the level

of inequality observed in the city at conventional levels of significance in 1980, 2000 and

2014. The same table, panel B, reports the evolution of the NI index at different distance

thresholds compared to the level of neighborhood inequality in individual neighborhoods

of size 0.4 miles. The gap in the NI index, in italics, is positive almost everywhere and

always increasing with distance. Nonetheless, these differences are not statistically signif-

icant in a distance range smaller than 5 miles. At 12 miles, H2
0 can be rejected in every

year with p-values that are slightly larger than 5% (smaller in 1990). The patterns of

p-values in the table confirm findings in Andreoli and Peluso (2018) that after 2000 the

degree of neighborhood inequality registered in small neighborhoods has become more

representative of the degree of inequality in the city, possibly reflecting the implications

of the recent economic crises.

The trends of neighborhood inequality in Chicago resemble those observed in other

large American metro areas. The year-to-year changes in NI, reported in panels b), c) and

d) of figure 1, are always positive at every distance range. The magnitude of these changes

is, however, too small to be statistically significant. Nonetheless, the cumulated change of

5The nature of the Census and ACS publicly accessible data does not allow to unbiasedly estimate NI
in neighborhoods smaller than 0.3 miles. Confidence intervals are only reported for larger neighborhoods.
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Years Distance d in miles
0.4 1 2 3 5 12

Panel A: p-values for H1
0

1980 0.000 0.000 0.000 0.000 0.004 0.160
1990 0.000 0.000 0.000 0.000 0.000 0.003
2000 0.000 0.000 0.000 0.000 0.001 0.070
2014 0.000 0.000 0.000 0.000 0.002 0.108
Panel B: p-values for H2

0

1980 . 0.493 0.454 0.396 0.239 0.067
0 0.000 0.001 0.003 0.009 0.020

1990 . 0.357 0.122 0.046 0.020 0.002
0 0.004 0.014 0.020 0.025 0.039

2000 . 0.311 0.410 0.461 0.239 0.060
0 -0.008 -0.004 0.002 0.012 0.027

2014 . 0.467 0.465 0.390 0.269 0.071
0 -0.001 0.002 0.005 0.011 0.027

Table 1: P-values for null hypothesis of the type H1
0 : NI(yt, d) = G(yt) and

H2
0 : NI(yt, d) = NI(yt, 0.4), with t = 1980, 1990, 2000, 2014 and G(y1980) = 0.434,

G(y1990) = 0.461, G(y2000) = 0.473, G(y2014) = 0.486. Differences in levels of the NI
index are in italic.

neighborhood inequality over the four decades turns out to be positive and significant at

every distance range. As panel f) shows, the acceptance region for H3
0 is always positive

and never includes the horizontal axis, implying that the NI curve of Chicago for 2014

lies always above that of 1980 and the gap between the two is statistically different from

(in fact, larger than) zero.

5 Monte Carlo study

The size and power properties of the estimators adopted to test dominance in NI curves are

now assessed within the framework of a Monte Carlo study. The study reports simulated

size and power for tests of differences of NI indices estimated at pre-determined distance

cutoffs on samples of variable size n (n = 1000, 2000, 5000, 8000 observations), each

draw from distinct known distributions. I calibrate the distributions to represent the

actual and alternative counterfactual distributions of gross equivalent household income in

Chicago, IL, in 2014. I first obtain these counterfactual distributions by applying suitable
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Figure 2: Neighborhood inequality in Chicago, IL, 2014, versus two counterfactual distri-
butions

(a) NI(F0, d)−NI(F1, d) (b) NI(F0, d)−NI(F2, d)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level.

transformations to the actual ACS 2010-2014 module data, so that these distributions

can be clearly ordered in terms of NI curves dominance. Then, I use moments of these

population distributions to identify moments of the income data generating processes that

I will use in the simulation study.

The first distribution F0 represents the spatial income distribution in Chicago, 2014,

which I study in the previous section. This distribution has mean µ0 = $53, 456, standard

deviation σ0 = $55, 310 and spatial covariance structure cov(s, v) across pairs of locations

at distance h one from the other. I characterize the spatial covariance function, repre-

senting spatial dependence in the population model, through the variogram γ0(.), so that

cov(s, v) = σ2
0 − γ0(h). I fit the spherical model for the (semi)variogram function to the

data, to obtain parameters α0 = −327, 203, β0 = 21.14 and range level a = 10 miles.

I produce two counterfactual population distributions F1 and F2 from the same data.

The distribution F1 is obtained by adding noise to F0, so that y1 = y0+ε for y1 ∼ F1, y0 ∼

F0 and ε ∼ N(0, 6118.44), where the variance term of idiosyncratic disturbances is half

a million time smaller than σ2
0. This counterfactual distribution displays similar patterns

of neighborhood inequality as F0. The null hypothesis H3
0 : NI(F0, d) = NI(F1, d), ∀d
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cannot be rejected, as shown in panel (a) of figure 2. This new population distribution

has expectation µ1 = µ0, standard error σ1 = $55, 631 > σ0 and variogram γ1(.) with

parameters α1 = −69, 660 and β1 = 21.19.

The second counterfactual distribution F2 is designed in a way that its NI curve lies

always below that of F0. This distribution is obtained by simulating the effect of a

redistributive linear income tax scheme applied to incomes distributed as F0. Andreoli

and Peluso (2018) have demonstrated that only a basic income flat tax scheme guarantees

that F2 dominates F0 in terms of NI curves. We hence use the transformation y2 =

(1− t)y0 + m, for y2 ∼ F2, y0 ∼ F0, a flat tax rate t = 0.3 and basic income m = 0.3µ0.

This counterfactual distribution displays different patterns of neighborhood inequality

compared to F0. The null hypothesis H3
0 : NI(F0, d) = NI(F1, d), ∀d is clearly rejected

in favor of a restricted strong dominance alternative, as shown in panel (b) of figure 2. This

new population distribution has expectation µ2 = µ0, standard error σ2 = $38, 716 < σ0

and variogram γ2(.) with parameters α2 = −158, 424.5 and β2 = 20.43.

The simulation study is based on models for the income process, denoted Yn
f for

f = 0, 1, 2, that replicate the population distributions F0, F1 and F2, respectively. As

before, the income process is a collection of random variables indexed by n, a parameter

controlled within the experiment, and defined over the random field Sn. The first concern

is to replicate the spatial structure of the data and construct a random field Sn that is

representative of the map of Chicago in terms of distance scale and population density.

To do so, I draw a random field Sn (reporting information about latitude and longitude

as well as demographic weights of n locations) directly from the ACS 2010-2014 map of

Chicago, by sampling n locations without replacement. This procedure should guarantee

that the structure of ACS data for Chicago is always reflected in the outcomes of the

simulation. These sampled locations are stored in a separate file for each n and used

throughout the simulation experiment. Results will be conditional to the random field

Sn.6

My second concern is to model the spatial income process Yn
f so that it represents

6The extracted coordinates of the random fields, alongside parameter estimates and replication code
for this Monte Carlo study, are made available on the author web page.
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income variability and spatial association underlying the population distributions Ff .

Given the random field Sn, I maintain the assumption that the spatial income process

satisfies intrinsic stationarity and the Gaussian hypothesis, implying that the process

is fully characterized by known moments of the population distribution, so that Yn
f ∼

(µf , σ
2
f , γf (.)) for f = 0, 1, 2. The Monte Carlo experiment consists in randomly drawing

realizations from Yn
f , each denoted ynf,r with r = 1, . . . , 200, and assessing for each draw

r if a certain null hypothesis about dominance in NI curves can or cannot be rejected,

provided that the actual pattern of dominance in the populations is known. I use the

SE approximations discussed in Section 3 to conclude about acceptance/rejections of the

relevant null hypothesis. The decision outcome is registered with an indicator, which is

then averaged across the 200 replicas to simulate size and power.

Each draw ynf,r from the spatial income process Yn
f , f = 0, 1, 2, should be represen-

tative of the degree of spatial association in the underlying population distribution Ff .

Coherently with previous assumptions, the spatial association between any pair of loca-

tions s, v on the random field Sn at geographic distance h (in miles) is provided by the

covariance term cs,v = σ2
f − γf (h). The empirical estimates of the moments (µf , σ

2
f , γf (.))

from the population distribution Ff identify the covariance matrix Cf of the spatial

income process, with Cf = {cs,v}, s = 1, . . . , n, v = 1, . . . , n and cs,s = σ2
f . I use decom-

position methods to factorize the covariance matrix as Cf = Df ·D′f , where Df is a lower

triangular matrix of size n × n. This matrix conveys the information about the spatial

association and variability in the population.7 Each replica r of a distribution f (of size

n) is then obtained as

ynf,r = µfen + Df · νr,

where en is a n×1 vector with all elements equal to one and νr is a n×1 vector of standard

normal distributed i.i.d. innovations. Throughout all replicas, values of the NI index and

7In many cases, the covariance matrix Cf is not positive semi-definite, implying that exact symmetric
decompositions are not available. I use approximations based on the spectral theorem, as suggested in
Bunch and Parlett (1971), to decompose Cf = X · diag(L) ·X′, where L is a vector of eigenvalues and X
collects the corresponding eigenvectors. I then set negative eigenvalues to zero to obtain L∗ and produce
an approximation of Cf , denoted C∗f , such that C∗f = X ·

√
diag(L∗) ·

√
diag(L∗) ·X′. I then apply a

Q-R decomposition of C∗f to obtain C∗f = R′f ·Rf where Df = R′f is a lower-triangular matrix.
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n Distance cutoffs (miles) # Rej. Rej. Weak Strong
0.4 0.7 1 1.4 1.7 2 3 5 12
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A : Size comparisons for the true null H3
0 : NI(yn

0,r, d) = NI(yn
1,r, d), ∀d

1000 . 0.00 . 0.24 . 0.19 0.16 0.03 0.01 1.1 0.46 0.60 0.00
2000 0.00 0.00 0.32 0.22 0.23 0.19 0.10 0.08 0.00 2.4 0.62 0.53 0.00
5000 0.00 0.00 0.33 0.15 0.17 0.09 0.01 0.01 0.00 1.1 0.52 0.47 0.00
8000 0.00 0.00 0.22 0.06 0.09 0.06 0.05 0.01 0.00 0.8 0.38 0.53 0.00
Panel B : Power comparisons for the true alternative H3

a : NI(yn
0,r, d) ≥ NI(yn

2,r, d), ∀d
1000 . 0.00 . 0.29 . 0.31 0.19 0.09 0.03 1.7 0.60 0.92 0.00
2000 0.00 0.00 0.40 0.31 0.44 0.26 0.13 0.08 0.00 3.3 0.85 0.88 0.00
5000 0.00 0.00 0.55 0.28 0.49 0.24 0.12 0.09 0.03 4.3 0.81 0.98 0.00
8000 0.00 0.05 0.57 0.34 0.53 0.32 0.30 0.22 0.15 8.7 0.82 0.99 0.00

Table 2: Monte Carlo simulations of the size and power of dominance tests for NI curves
that are based on the NI index SE approximations.

of the SE approximations can be meaningfully computed only at some distance cutoffs.

For samples of size n = 2000, 5000, 8000, distance cutoffs are set at approximately a third

of a mile distance range increments within the first 7 miles, and then at about two third

of a mile increments within the next 12 miles (at 19 miles range the NI index converges

to citywide inequality). For the sample of size n = 1000, distance thresholds within 1 and

19 miles are set by looking at increments of three quarters of a mile exclusively. H3
0 (d)

is tested at each distance cutoff. The null hypothesis of the type H3
0 is tested instead by

looking at all distance cutoffs.

The first goal of this section is to infer about the size for the tests for various null

hypothesis about NI curves. The size of the test corresponds to the share of simulated

samples that allow to reject the relevant null hypothesis when the null hypothesis is true

in the population. I use population distributions F0 and F1 as references, where it is

known that H3
0 : NI(F0, d) = NI(F1, d), ∀d is true. I draw replicas yn0,r and yn1,r from the

underlying spatial models Yn
0 and Yn

1 for various levels of n. For each replica r I then

test whether H3
0 (d): NI(yn0,r, d) = NI(yn1,r, d), as well as the implied null H3

0 , are rejected

by the sample data. I record the rejections and store the average share of rejections over

the 200 replicas in Panel A of table 2. Columns (1) to (9) report the size of test for

null hypothesis H3
0 (d) at well defined distance cutoffs. Column (10) reports the average

number of rejections of H3
0 (d) at available distance cutoffs across all replicas. Column (11)
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reports the proportion of times that a null hypothesis H3
0 (d) is rejected at least one. This

figure likely estimates an upper bound for the size, insofar it is sufficient that there exist

a d for which H3
0 (d) is rejected to conclude that the null is rejected at stage r. Columns

(12) and (13) report, respectively, the share of cases where the rejection entails a weak

dominance in NI curves (i.e., all cases where multiple rejections of H3
0 (d) occur within

the same replica r and differences in NI curves have the same sign) and the proportion of

the cases in (12) where dominance is strong (i.e., H3
0 is rejected at every distance cutoff).

The product of the coefficients in columns (13), (12) and (11) gives a good estimate of a

lower bound for the size of the tests.

Overall, the tests based on the NI index SE bounds have larger size compared to the

nominal 5% level. The size of tests carried out at fixed distance cutoffs is smaller than

10% when the sample size is at least of 5000 units, while it is much larger for samples

of smaller size. The size of the test is virtually zero when the NI index estimates are

based on individual neighborhoods of size smaller then 1 mile. This might reflect the

consequences of imperfectly estimating the income distribution at the very local scale. A

bit more expected is the fact that the size of the tests for H3
0 (d) at distance ranges larger

than 5 miles are below 5%. At these distance ranges, in fact, neighborhood inequality

converges to the levels of citywide inequality measured by the Gini coefficient, and the SE

approximation converges asymptotically (since the spatial association of incomes becomes

negligible). There is on average less than 1 rejection of H3
0 (d) across the distance cutoffs

for which I test. The upper bound for the size is of 38% in the largest sample. The size

of the test monotonically converges to this number as the sample size grows. A linear

interpolation of size estimates in column (11) suggests that the upper bound for the size

converges to its nominal value of 5% when the sample size is larger than 16,000 units. I

also find that the number of rejections related to the weak form of dominance is about

50%, although no strong forms of dominance are registered.

The second goal of this section is to infer the power for the tests for various null

hypothesis about NI curves. The power corresponds to the share of replicas that reject

the relevant null hypothesis in favor of a specific alternative when the alternative is true
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in the population. I use population distributions F0 and F2 as references, where it is

known that H3
0 : NI(F0, d) = NI(F1, d), ∀d is rejected in favor of (strong) dominance in

NI curves. I draw replicas yn0,r and yn2,r from the underlying spatial models Yn
0 and Yn

2

for various n. For each replica r, I then test if H3
0 (d): NI(yn0,r, d) = NI(yn2,r, d) at each

distance cutoff separately, as well as the implied null H3
0 , are rejected by the sample data.

I find that the power of tests for H3
0 (d) are relatively small for small and large distance

cutoffs. Power estimates are instead always larger than 30% for distance cutoffs between

1 and 5 miles for which I test. I record larger power estimates for violations of H3
0 , with

all cases displaying statistically significant differences in NI curves that are of the same

sign. Tests for H3
0 neglect the positive correlation between SE computed at different

distance cutoffs, thus making rejections of the null hypothesis more likely (since part of

the variability in NI curves estimates is neglected). Hence, rejections rates for H3
0 in favor

of (weak) dominance can only be interpreted as upper bounds for the power of the joint

tests. I estimate these upper bounds by the product of the share of rejections (column

(11)) times the proportions of rejections where weak dominance is detected (column (12)).

The upper bound for the power of tests for H3
0 is of 74.8% for samples of size 2000 units

and grows to 81% in the largest samples. These power estimates are reasonable and,

despite being only upper bound, support the validity of tests for NI curves dominance

based on the SE approximations I propose even in relatively small samples. I also find

that the average number of distance cutoffs where H3
0 (d) is rejected at any given simulated

sample grows steadily with the simulated sample size (column (10)), from 1.7 rejections

when n = 1000 to 8.7 rejections on average when n = 8000, alongside larger chances that

these rejections are in favor of a weak form of dominance in NI curves. Altogether, these

figures confirm the relevance of the SE approximations for inferring about patterns and

dynamics of neighborhood inequality.

6 Concluding remarks

This article provides variance bounds for the neighborhood inequality index proposed

by Andreoli and Peluso (2018). These bounds are identified from the knowledge of the
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variogram function which, under assumptions on the income generating process that are

common in spatial statistics literature, fully characterizes the spatial income distribution.

An application to rich income data from the American Census and the Community

Survey motivates the interest in using SE approximations for the NI index when assessing

patterns and trends of neighborhood inequality across American cities. Focussing on the

city of Chicago, IL, I find robust statistical evidence that neighborhood inequality is large

even for individual neighborhoods of small size, but it is statistically different from city-

wide inequality (as measured by the Gini index). The cumulated growth of neighborhood

inequality over the period 1980-2014 is substantial and significant at standard confidence

levels, reflecting a general trend in largest American cities documented in Andreoli and

Peluso (2018). The Monte Carlo study shows that the tests for NI curves dominance based

on the SE approximations I study have higher size than the nominal values, although the

(upper bound) size estimates quickly converges when the sample size grows. I expect that

a sample of 16,000 units, smaller than the sample used to obtain estimates on the 5-years

ACS module, is sufficient to guarantee that the size of the test is consider converge to their

nominal values. The power of these tests is relatively small for null hypotheses defined

at given distance cutoffs (but larger than 30%), but power grows significantly to more

than 80% when considering tests for NI curves (weak) dominance (although these are only

upper bounds). Some of the null hypothesis I investigate require multiple testing, a factor

I do not account for in the simulation exercise and that will be addressed elsewhere.

As a remark, the SE bounds for the NI index that I provide seem to be relevant for

inferring about neighborhood inequality in samples of urban population of no less then

8000 individuals. Investigations about the appropriate testing procedure when placing

dominance/non-dominance of NI curves under the null are also left for future research.
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