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Abstract 

 

Electrified shared mobility services need to handle charging infrastructure planning and manage their 

daily charging operations to minimize total charging operation time and cost. However, existing studies 

tend to address these problems separately. A new online vehicle-charging assignment model is proposed 

and integrated into the fast charging location problem for dynamic ridesharing services using electric 

vehicles. The latter is formulated as a bi-level optimization problem to minimize the fleet’s daily 

charging operation time. A surrogate-assisted optimization approach is proposed to solve the 

combinatorial optimization problem efficiently. The proposed model is tested on a realistic flexible bus 

service in Luxembourg. The results show that the proposed online charging policy can effectively 

reduce the charging delays of the fleet compared to the state-of-the-art methods. With 10 additional DC 

fast chargers installed, charging operation time can be reduced up to 27.8% when applying the online 

charging policy under the test scenarios.  
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1.  Introduction 

 

Electrifying shared vehicle fleets has become increasingly popular due to the benefits of the zero-

emission nature of battery electric vehicles (EVs) and lower per-mile operating costs (George and Zafar, 

2018). However, operating EV fleets for shared on-demand mobility services requires recharging 

vehicles several times a day, mainly relying on DC fast chargers to reduce the idle time of vehicles 

(Jenn, 2019). Due to the limited number of fast chargers and the increasing number of EVs, EV charging 

operations might suffer increasing queuing delays and higher charging operation costs. Transport 

network companies need to consider new fast charging infrastructure investments to reduce the total 

system operating costs. Several studies have begun working on related issues for fast charging station 

planning of on-demand mobility services using EVs (Wu and Sioshansi, 2017; Jung and Chow, 2019; 

Roni et al., 2019). 

Charging station location problems have been studied widely in recent years, focusing on the optimal 

configuration of public charging infrastructure to meet the charging needs of private electric vehicles 

(PEVs) and promote PEV adoption (see the recent literature review in Shen et al., 2019). Nevertheless, 

these studies are mainly conducted from a PEV charging needs perspective (overnight charging, trip 

chaining for daily activity realizations), which is characterized by very different driving and charging 

demand patterns of commercial electric vehicles for shared or on-demand mobility services. From the 

operator perspective, the most important obstacles for e-fleet operation are related to the long charging 

time, which might significantly reduce vehicle availability for serving customers (George et al., 2018). 

Operating EVs for shared mobility services requires optimal charging management given limited fast 

charging facilities. While there are several studies related to public charging station location planning 

for electric car-sharing systems and e-taxi fleets (Jung et al., 2014; Asamer et al., 2016; Brandstätter et 

al., 2017; Yang et al., 2017; Zhang et al., 2019), they do not jointly address the optimal charging 

management of e-fleets when planning new charging station infrastructure. This issue is particularly 

relevant because the location of charging stations influences the access time and charging queuing 

delays; in turn, the charging management strategy (determining at which charging stations to charge 

EVs over time) impacts the occupancy of charging stations and queuing delays when arriving at 

charging stations. The joint consideration of optimal charging management and new charging 

infrastructure planning allows for the optimization of e-fleet operation, minimizing the total queuing 

delays of charging operations under stochastic customer demand and driving patterns of EVs.  

We propose a new dynamic vehicle-charging station assignment policy, formulated as a mixed integer 

linear program (MILP), which is integrated into the bi-level optimal fast charging location problem for 

fast charging station extension of dynamic ridesharing services. The vehicle-charging station 

assignment policy is considered in a stochastic environment accounting for vehicle charging delays 

(including travel time to reach charging stations, charging queuing times, and charging time) under a 

heterogeneous capacitated charging network. We apply the MILP model based on the rolling time-

window framework to minimize the daily charging operation times of EV-based dynamic ridesharing 

services. To validate the proposed model, we test it on the Luxembourg flexible bus service under 

different hypothetical scenarios. The results show that the proposed method significantly reduces 

vehicle charging operation time and queuing delays compared to the state-of-the-art charging policies. 

To solve the bi-level fast charging location problem, we propose a surrogate-assisted optimization (SO) 

approach to efficiently find near-optimal solutions. The benefit of the fast charging station extension 

for fleet charging operation time and the environmental benefit of electrifying the fleet are evaluated 

for the Luxembourg case study.       

The rest of the paper is organized as follows. Section 2 gives a short review of the literature related to 

charging station location problems and charging scheduling under uncertainty. Section 3 introduces the 

bi-level optimization-simulation framework for fast charging location planning by integrating a new 
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vehicle-charging station assignment model to minimize the total vehicle idle time. An SO approach is 

proposed to solve the bi-level optimization problem efficiently. Section 4 applies the methodology for 

a realistic flexible bus service in Luxembourg. We describe the simulation platform and empirical data 

and conduct several experiments to evaluate the performance of the proposed methodology. We 

quantify the benefit of new fast charging stations on total vehicle charging operation times and evaluate 

the environmental benefits of the electrification of the flexible bus service in Luxembourg. Finally, 

conclusions are drawn and future extensions are discussed. 

 

2. Related work 

  

Charging station location problems have been widely studied in recent years in order to plan charging 

infrastructure to meet EV charging needs. The problem involves the optimization of the configuration 

(number, type, and locations) of a number of charging facilities where an objective function with EV 

access cost, queuing delays, and/or investment cost is minimized. The problem is generally modeled as 

a p-median problem to locate a number of facilities with minimal total customer access time (Serra and 

Marianov, 1998; Drezner and Hamacker, 2002). The basic p-median charging station location model 

has been extended by considering multiple types of chargers (Wang and Lin, 2013) and different factors 

of uncertainty. Several studies incorporate stochastic PEV driving patterns for DC fast charging station 

location planning. Davidov and Pantoš (2017) proposed a stochastic optimization model for long-term 

charging infrastructure expansion planning considering the stochastic driving behavior of PEV users 

under investment cost and quality of service constraints. Wu and Sioshansi (2017) proposed a stochastic 

optimization model for locating public fast charging infrastructure with the objective of maximizing the 

expected number of PEVs served by the charging infrastructure considering trip-chaining behavior. Liu 

and Wang (2016) proposed a tri-level optimization-simulation model for the multi-type charging station 

location problem considering a user-equilibrium model. The upper level considers a multi-type charging 

station location problem for social welfare maximization. The middle level considers user’s EV 

purchase type choice behavior for plug-in or wireless charging EVs. The lower level considers tour-

based travel demand and charging needs under a user-equilibrium model. Due to the high computational 

time needed for solving the lower-level problem, the authors apply an SO approach to solve the tri-level 

optimization problem. A recent review of the charging-station location model can be found in Shen et 

al. (2019).  

For commercial e-fleet charging network planning, several charging-location optimization applications 

have been proposed for electric car-sharing services (Brandstätter et al., 2017), e-taxis (Asamer et al., 

2016; Jung et al., 2014), and shared autonomous vehicles (Zhao et al., 2019; Zhang et al., 2019). 

However, these studies consider the charging station planning problem by neglecting the joint charging 

management problem. Jung et al. (2014) classify the EV charging station location models into three 

categories: node-based, flow-interception-based, and itinerary-interception-based approaches. The 

node-based approach minimizes the total weighted access travel distance/costs from node demand to 

the nearest facilities. The flow-interception approach determines the facility locations to maximize the 

coverage of origin-destination (OD) flows of electric vehicles. The itinerary-interception approach 

considers PEV drivers’ trip-chaining behavior to minimize the total travel time/cost and delays of 

recharging when siting a set of charging stations. The authors proposed an itinerary-interception-based 

model for charging station location optimization of a fleet of e-taxis considering two new aspects: (1) 

stochastic charging demand and (2) queuing delays at charging stations due to daytime charges. The 

charging behavior of drivers is assumed using the nearest charging station policy for recharging when 

the battery level of vehicles is lower than a threshold. Such a non-coordinated charging policy might 

incur significant charging delays when multiple EVs head for the same fast charging station in rush 

hours (Yuan et al., 2019). With the advance of communication technology, the operator can deploy 
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centralized control strategies to optimally assign vehicles to charging stations based on real-time 

monitoring of vehicle battery state and charging station queues (Hu et al., 2014). Hu et al. (2016) 

provide a recent literature review on the different control strategies available for fleet operators to 

optimize EV charging scheduling and management.  

The long charging time of EVs and limited fast charging infrastructure may increase the charging delays, 

idle time, and operation costs of e-fleets. Recent studies have started looking at smart charging 

management under uncertainty to minimize charging delays for fleet operations (Qin and Zhang, 2011; 

Yuan et al., 2019; Tian et al., 2016; Ma et al., 2019a; Ma and Chow, 2020; Zhang and Chen, 2020; 

Pantelidis et al., 2020). Qin and Zhang (2011) introduced a charging scheduling model to minimize 

charging waiting times, considering a highway road network with charging stations deployed at some 

entrance/exit locations. The charging locations are connected by the Internet and communicate the 

charging station state with nearby EVs via wireless devices.  The problem aims to minimize the average 

charging delay by considering an M/M/c queuing system with hypothetical Poisson-distributed service 

time and arrival rates. Yuan et al. (2019) proposed a partial charging policy for e-taxis to minimize the 

idle time of vehicles and increase the availability of vehicles to serve customers. They introduce a 

receding horizon optimization approach to scheduling e-taxi charging by sensing the state of charge of 

the e-taxi fleet and the occupancy of charging stations. The system is zone-based to assign e-taxis from 

one zone to another over pre-defined charging time decision slots to minimize the total vehicle idle time 

of the e-taxi fleet. The queuing delay at the charging station is approximated at the zonal level. Tian et 

al. (2016) consider a real-time charging station recommendation system for e-taxi operations to 

minimize the expected charging waiting time. The system tracks real-time e-taxi states (location, battery 

level, and driving patterns) to estimate an e-taxi’s probabilistic charging intention and then recommends 

the station with the shortest charging waiting time. However, the recommendation system does not 

coordinate the charging scheduling of the entire e-taxi fleet.  

Charging management allows the fleet operator to reduce the total charging delays and operation costs 

of on-demand or shared mobility services. However, existing optimal charging station location models 

have not integrated dynamic charging management into fast-charging station location decisions. This 

research gap is addressed in this study. We summarize the main contributions as follows: 

1) We propose a dynamic vehicle-charging station assignment model for the electric ridesharing system 

to minimize total vehicle idle times for recharging under a stochastic environment. We explicitly 

consider charging station capacity and vehicle charging queuing delays to capture total charging 

operation times under stochastic demand. Our realistic case study shows that the proposed methodology 

outperforms state-of-the-art methods.      

2) We integrate the above charging management policy into the facility location problem of fast 

charging station extensions for the electric ridesharing system. The problem is formulated as a bi-level 

optimization problem and solved by the surrogate-assisted optimization approach. 

3) The proposed methodology is applied to a realistic flexible bus service in Luxembourg for which the 

benefit of new fast charging stations is evaluated. The environmental benefit of electrifying the fleet of 

flexible bus services in terms of CO2 emission savings is assessed under different test scenarios.         

 

3. Bi-level optimization-simulation framework for optimal fast-charging station location 

planning 

 

This section proposes a bi-level optimization-simulation framework for modeling optimal fast charging 

station location problems with integrated charging management for dynamic ridesharing systems using 

EVs. Section 3.1 presents the bi-level optimization-simulation modeling framework. As the fast 
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charging station location problem involves the computationally expensive simulation of a dynamic 

electric ridesharing system, an SO approach is proposed in Section 3.2 to find solutions.   

3.1. Proposed bi-level optimization-simulation framework 

We consider the problem of siting a set of fast charging stations from a ridesharing/microtransit operator 

perspective (e.g., Via https://ridewithvia.com/ or MaaS Global https://whimapp.com/) under stochastic 

customer demand. The operator deploys centralized real-time charging management to assign EVs to 

specific charging stations for recharge to minimize the total charging delays. To limit the scope, we 

assume the number of fast chargers is given exogenously. Practitioners can relax this assumption by 

considering their budget constraints to jointly determine the number of fast chargers, their types, and 

their locations (Zhang et al., 2019) or by using a multi-period planning framework for charging 

infrastructure extension planning (Chung and Kwon, 2015). This type of problem might be encountered 

by fleet operators of shared mobility services (car-sharing, flexible buses, taxis) seeking to electrify 

their current gasoline vehicles and/or invest in fast charging facilities to improve the efficiency of daily 

charging operations. The fast-charging station location problem is formulated as a bi-level optimization 

problem with: (1) an upper-level facility location problem to minimize total daily vehicle idle time 

(travel time to reach a charging station, waiting time to be served at charging stations, and charging 

time) due to charging operations, and (2) a lower-level problem of dynamic ridesharing using a fleet of 

EVs with dynamic vehicle-charging station assignment management.      

 

P1: Upper-level problem 

min 𝑍(𝒖) = ∑(𝑇𝑣
𝐴(𝒖) + 𝑇𝑣

𝐺(𝒖) + 𝑇𝑣
𝑊(𝒖))

𝑣

 (1) 

subject to  

∑ 𝑢𝑘

𝑘∈𝐾

= 𝑈 (2) 

0 ≤ 𝑢𝑘 ≤ 𝑢𝑘
+, 𝑘 ∈ 𝐾 (3) 

𝑢𝑘 ∈ 0 ∪ 𝑍+ (4) 

The objective function (1) minimizes the total fleet idle time due to multiple charging operations 

executed during daily ridesharing service operations. The daily charging operation time of a vehicle 

includes the toal access time (travel time to reach a charging station) 𝑇𝑣
𝐴, charging time 𝑇𝑣

𝐺 , and total 

waiting time at charging stations 𝑇𝑣
𝑊. These metrics depend on the charging infrastructure configuration 

(u) and are the outputs of the lower-level problem. Constraint (2) states that the total number of fast 

chargers to be installed is fixed. Constraint (3) states that the number of installed chargers 𝑢𝑘 at site k 

cannot exceed a pre-defined maximum number 𝑢𝑘
+. Constraint (4) ensures that the number of installed 

chargers at site k is a non-negative integer.  

P2: Lower-level problem 

The lower-level problem is a dynamic ridesharing problem with stochastic demand using a fleet of EVs. 

Due to stochastic customer arrival patterns, vehicle charging demand and queuing delays are evaluated 

by simulations. Existing studies assume that e-fleets recharge their battery at the nearest charging station 

whenever the vehicle’s battery level is lower than a threshold (Bischoff and Maciejewski, 2014; Jung 

and Chow, 2019). The goal is to minimize the total travel time and queuing delays for daily charging 

operations. Different from the nearest charging station approaches, we adopt an optimal vehicle-

https://ridewithvia.com/
https://whimapp.com/
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charging station assignemnt strategy based on the current system state (queuing state at chargers, 

vehicle position and energy level) to minimize total vehicle idle time. In doing so, available charging 

capacity can be used more effectively compared to the myopic nearest charging station assignment 

strategy. We demonstrate the benefit of the optimal charging station assignment policy and compare its 

performance with state-of-the-art charging station assignment policies in Section 4. The bi-level 

interactions allow the iterative modeling of the impact of charging station location decisions on vehicle 

idle time due to charging operations at the upper level, while at the lower level, vehicle dispatching and 

routing are influenced by the charging operations, which provide the metrics to adjust decisions 

regarding charging station locations. In the following, we propose an optimal charging management 

policy to minimize vehicle idle time due to vehicle recharging operations. The dynamic ridesharing 

system using EVs will be described in Section 4.2.    

Notation 

Parameter 

𝐼 Set of vehicles to be assigned for recharge at the beginning of epoch h (index h is dropped) 

𝐽 Set of chargers  

𝑡𝑖𝑗 Travel time from the location of vehicle 𝑖 to charger 𝑗 

𝑑𝑖𝑗 Travel distance from the location of vehicle 𝑖 to charger 𝑗 

𝑀 Large positive constant 

𝑒𝑖 State of charge of vehicle i at the beginning of epoch h (index h is dropped) 

𝑒𝑚𝑖𝑛 Minimum reserve battery level of EVs 

𝑒𝑚𝑎𝑥 Maximum recharge level of battery 

𝑡𝑗
𝐴 Time until which charger j is occupied by another vehicle from the beginning of epoch h (index 

h is dropped) 

𝜑𝑗 Charging power of charger j (kWh) 

𝜇 EV driving efficiency (kWh/km) 

 

Decision variable 

𝑋𝑖𝑗 Vehicle 𝑖 is assigned to charger 𝑗 for recharge in epoch h if 𝑋𝑖𝑗 = 1, and 0 otherwise (index h is 

dropped) 

𝑌𝑖𝑗 Amount of energy recharged for vehicle 𝑖 at charger 𝑗 

𝑊𝑖𝑗 Artificial variable representing the waiting time of vehicle i at charging station j 

 

Consider a transport network company (operator) providing a ridesharing/microtransit service using a 

fleet of EVs. We assume that each EV is recharged to 80% of battery capacity to conserve EV battery 

life (Zhang and Chen, 2020). The state of charge of each EV is monitored in real-time by a dispatching 

center using dedicated remote-communication technology (Hu et al., 2014). For simplification, we 

assume a linear energy consumption of EVs, i.e., the energy consumption is proportional to travel 

distance regardless of other factors (Goeke, 2019). Moreover, when the state of charge of an EV is 

lower than a predefined threshold, a charging request is sent to the dispatching center for centralized 

vehicle-charging station assignment. We assume that the dispatching center has real-time information 

on charging station status (number of available chargers, charger types, charging schedule of each 

charger). To optimize charging scheduling with minimum vehicle idle time over the planning period 

(24 hours), we adopt a decomposition method that solves the charging management (assign EVs to 

specific chargers) in a rolling time-window manner. This decomposition methodology has been widely 

applied in different disciplines to solve complex optimization problem under undertainty (Chand et al., 

2002).    
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We divide the planning horizon (one day) into a set of charging decision epochs, 𝐻 = {1,2, … , 𝐻̅}, with 

the fixed time interval ∆. The time interval for a decision epoch h is 𝑡0 + ℎ∆≤ 𝑡 < 𝑡0 + (ℎ + 1)∆. 

Vehicles reaching below the charging threshold (e.g., 20% of battery capacity) within a decision epoch 

h–1 are scheduled for recharge at the beginning of the next epoch h. Given the system states at the 

beginning of epoch h, the dispatching center conducts vehicle charging station assignment by solving 

the following MILP problem at the beginning of each decision epoch ℎ ∈ 𝐻. The MILP problem is 

formulated as follows. 

 

min 𝐹(𝑋, 𝑌, 𝑊) = ∑ ∑ 𝑡𝑖𝑗𝑋𝑖𝑗

𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ 𝑌𝑖𝑗/𝜑𝑗

𝑗∈𝐽

+ ∑ ∑ 𝑊𝑖𝑗

𝑗∈𝐽𝑖∈𝐼𝑖∈𝐼

 (5) 

subject to  

∑ 𝑋𝑖𝑗

𝑗∈𝐽

= 1, ∀𝑖 ∈ 𝐼 (6) 

∑ 𝑋𝑖𝑗

𝑖∈𝐼

≤ 1, ∀𝑗 ∈ 𝐽 (7) 

𝑒𝑚𝑖𝑛 ≤ 𝑒𝑖 − 𝜇𝑑𝑖𝑗𝑋𝑖𝑗 + 𝑀(1 − 𝑋𝑖𝑗), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (8) 

𝑒𝑚𝑎𝑥 ≤ 𝑌𝑖𝑗 + 𝑒𝑖 − 𝜇𝑑𝑖𝑗𝑋𝑖𝑗 + 𝑀(1 − 𝑋𝑖𝑗), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (9) 

𝑌𝑖𝑗 ≤ 𝑀𝑋𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (10) 

𝑡𝑗
𝐴 − 𝑡𝑖𝑗𝑋𝑖𝑗 − 𝑀(1 − 𝑋𝑖𝑗) ≤ 𝑊𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

(11) 

𝑋𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (12) 

𝑌𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  (13) 

𝑊𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   (14) 

The objective function (5) minimizes total vehicle idle time due to charging operations. The first term 

is related to vehicle travel time to reach charging stations. The second term is the total charging times 

of vehicles. The third term represents vehicle waiting times at charging stations. When a charger is 

occupied, the next arriving vehicle needs to wait in a queue to get served. Equation (6) ensures that each 

vehicle is assigned to exactly one charger. Equation (7) ensures that each charger is assigned to at most 

one vehicle. Equation (8) ensures that the remaining energy of a vehicle should be no less than a 

minimum reserve value when arriving at a charging station. Equation (9) ensures that the energy level 

after recharge is no less than a pre-defined maximum value. Given that the objective function is to 

minimize total vehicle idle time, the resulting energy level after recharge is equal to 𝑒𝑚𝑎𝑥.  Equation 

(10) ensures that the recharged energy amount is non-negative when a vehicle is assigned for recharge. 

Equation (11) states that a vehicle’s waiting time at a charging station equals the difference between 

the time when the charger becomes available (𝑡𝑗
𝐴) and the arrival time of the vehicle. Note that 𝑡𝑗

𝐴 is 

obtained according to the charging station occupancy state at the beginning of epoch h, which might 

not be accurate when a vehicle i reaches charger j at a later time 𝑡’ due to different uncertainty factors, 
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i.e., vehicles previously assigned to a charger j might arrive within or later than epoch h (not being 

considered in 𝑡𝑗
𝐴), and the arrival time of an assigned vehicle i at charger j might be delayed due to 

serving onboard customers, which might cause another vehicle to arrive at j earlier and make vehicle i 

wait in the queue. Both situations could lead to 𝑡𝑗
𝐴  being underestimated and compromise the 

effectiveness of the proposed method. To overcome this issue, an alternative method is to consider only 

unoccupied chargers at the moment of assignment. We will compare the performance of this method in 

the numerical studies.   

Note that Equations (6)–(7) are correct in the situation where |𝐼| ≤ |𝐽|. In case the number of vehicles 

is greater than that of chargers (|𝐼| > |𝐽|), Equations (6) –(7) are replaced by (15)–(16) below to ensure 

consistency.  

∑ 𝑋𝑖𝑗

𝑗∈𝐽

≤ 1, ∀𝑖 ∈ 𝐼 (15) 

∑ 𝑋𝑖𝑗

𝑖∈𝐼

= 1, ∀𝑗 ∈ 𝐽 (16) 

The MILP problem of (5)–(16) is a variant of the generalized assignment problem, which is NP-hard 

(Fisher and Jaikumar, 1981). The exact solutions can be obtained for small test instances (less than 50 

vehicles and chargers). We apply the Lagrangian relaxation (LR) method (Fisher, 2004) to efficiently 

find near-optimal solutions for large-scale test instances. The applied LR heuristic (Ma and Chow, 

2020) can solve large test instances up to one thousand vehicles and one thousand chargers to near-

optimal (0.5% optimality gap) in less than 3 minutes on a classical laptop. The reader is referred to that 

study for a more detailed description. Note that we assume that EVs follow their assigned charging 

station instructions for recharge when all onboard customers are served. The charging demand from 

private EVs or taxis that compete for available public charging resources are not considered in this 

study. One can relax this assumption by considering historical charging patterns of the public chargers 

to simulate the uncertainty related to charging infrastructure availability in the presence of other EVs.  

3.2. Surrogate-assisted optimization algorithm 

The SO method is a derive-free global optimization method for expensive black-box objective function 

evaluations given a set of constraints (Regis and Shoemaker, 2007; Vu et al., 2017). Given a few initial 

samples, the SO method constructs a surrogate model to determine the next promising sampling points 

to speed up the search of a global minimum. The process is iterated until a stop criterion is met. This 

method has been widely applied in both academia and industry (Vu et al., 2017). Regis and Shoemaker 

(2007) proved that under mild assumptions, the SO method convergences to a global optimum.  

The proposed SO method for solving the bi-level charging station location problem is described as 

follows. 

Step 1 (Initial sampling evaluation): Select  𝑛0  initial random evaluation points 𝒬0 = {𝒖𝒌}, 𝑘 =

1, … , 𝑛0, satisfying constraints (2)–(4) of P1. Run the ridesharing system simulations using EVs, solve 

the optimal charging assignment for each charging decision epoch ℎ ∈ 𝐻, and obtain the metrics of 

charging delays. Evaluate the objective function (1) and obtain the pairs of the evaluation points and 

the objective function values (𝒖𝒌, 𝑍𝑘), 𝑘 = 1, … , 𝑛0. Set the previously evaluated points as 𝒬 = 𝒬0. Set 

iteration index 𝑗 = 1. 

Step 2 (Surrogate model construction): Given the previously evaluated points 𝒬, build/update the 

surrogate model based on a radial basis function (Gutmann, 2001) for the objective function 

approximation as in (17).   



9 
 

𝑠(𝒖) = ∑ 𝜆𝑖𝜙(‖𝒖 − 𝒖𝑖‖) + 𝑝(𝒖)

𝑛

𝑖=1

, (17) 

where 𝜆𝑖 ∈ ℛ and ‖∙‖ is the Euclidean norm. 𝜙(𝒖) is a radial basis function. 𝑝(𝒖) is a polynomial 

function, defined as 𝑝(𝒖)  =  𝒃𝑇 𝒖 +  𝒂 , where a and b are unknown parameters. Popular radius 

functions such as 𝜙(𝑟) = 𝑟3 (cubic) or 𝜙(𝑟) = 𝑒−𝛾𝑟2
(Gaussian) can be used (Gutmann, 2001). The 

unknown parameters 𝝀, a, and b can be obtained by solving the system of linear equations (Vu et al., 

2017).  

Step 3 (Select the next evaluation points): Sample 𝑛𝑗 random feasible evaluation points based on the 

stochastic response surface method (Regis and Shoemaker, 2007). First, randomly generate a set of 

feasible candidate points Ω𝑗 and evaluate the score of each point based on the merit function defined by 

(18). 

𝑓(𝒖) = 𝑤𝑗𝐴𝑗(𝒖) + (1 − 𝑤𝑗)𝐵𝑗(𝒖), (18) 

where 𝐴𝑗 =
𝑠𝑗(𝒖)−𝑠𝑗

𝑚𝑖𝑛

𝑠𝑗
𝑚𝑎𝑥−𝑠𝑗

𝑚𝑖𝑛  if 𝑠𝑗
𝑚𝑎𝑥 ≠ 𝑠𝑗

𝑚𝑖𝑛 , and 1 otherwise. 𝐵𝑗 =
𝑑𝑗

𝑚𝑎𝑥−𝑑𝑗(𝒖)

𝑑𝑗
𝑚𝑎𝑥−𝑑𝑗

𝑚𝑖𝑛  if 𝑑𝑗
𝑚𝑎𝑥 ≠ 𝑑𝑗

𝑚𝑖𝑛 , and 1 

otherwise. 𝑠𝑗(𝒖) is the estimated surrogate value of (17) at the candidate point u. 𝑠𝑗
𝑚𝑖𝑛 and 𝑠𝑗

𝑚𝑎𝑥 are 

the minimum and maximum surrogate values in Ω𝑗 , respectively. 𝑑𝑗(𝒖)  is a distance metric that 

measures the minimum distance between a candidate point u and previously evaluated points 𝒬, defined 

as 𝑑(𝒖) = min𝒖𝒊∈𝑄 (𝐷(𝒖, 𝒖𝑖)) , where 𝐷(∙)  is the Euclidean distance metric. We define 𝑑𝑗
𝑚𝑎𝑥 =

max𝒖𝒊∈Ω𝑗
{𝑑(𝒖𝒊)} and 𝑑𝑗

𝑚𝑖𝑛 = min𝒖𝒊∈Ω𝑗
{𝑑(𝒖𝒊)}. 𝑤𝑗 is the weight between 0 and 1. The next evaluation 

point at iteration j is selected as 𝒖𝑗
′ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒖𝒊∈Ω𝑗

{𝑓(𝒖𝒊)} . Given 𝒖𝑗
′, run the simulation of the lower-

level problem and evaluate the objective function (1). Update 𝒬 = 𝒬 ∪ 𝒖𝑗
′ .   

Step 4 (Stop criteria): If iteration 𝑗 = 𝑗𝑚𝑎𝑥 or the value of the objective function stabilizes, then stop. 

Otherwise set 𝑗: = 𝑗 + 1 and go to Step 2. 

 

4. Computational study 

 

In this section, we present a realistic case study for a flexible bus service using EVs in Luxembourg. 

First, we present the test scenarios and parameter settings. Then we describe the vehicle dispatching 

and routing policy of the dynamic EV-based ridesharing service and the simulation platform. To 

validate the proposed optimal vehicle-charging station assignment policy, we compare its performance 

with two state-of-the-art methods. Finally, we evaluate the environmental benefit and charging delay 

reduction due to new fast charging infrastructure. The simulation case study is implemented in 

MATLAB using a Dell Latitude E5470 laptop with win64 OS, Intel i5-6300U CPU, 2 Cores, and 8GB 

memory. 

4.1. Luxembourg flexible electric bus case study 

We test the proposed bi-level fast charging station location extension problem on a flexible bus service 

(Flexibus, https://www.sales-lentz.lu/fr/communes/flexibus/) in Luxembourg. Sales-Lentz (transport 

network company) is the major bus company in Luxembourg, operating a fleet of gasoline shuttles to 

provide flexible door-to-door bus services in all of Luxembourg. To promote e-mobility, the company 

operates a fleet of hybrid electric vehicles and fully electric minibuses in Luxembourg. In our case study, 

we assume that the company would like to electrify the fleet of its Flexibus service and plans to install 

https://www.sales-lentz.lu/fr/communes/flexibus/)
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a number of DC fast chargers in Luxembourg to reduce total charging operation time. We assume that 

the number of DC fast chargers to be installed is exogenously given. As public transport in Luxembourg 

is completely subsidized, the objective of the operator is to minimize the total vehicle-charging 

operation time for its daily operation of the Flexibus service.  

We assume that the electric shuttles can either be recharged on the existing public charging network 

(Chargy network, https://chargy.lu/en/) or new fast chargers can be installed. Presently, there are a total 

of 814 level-2 chargers (22 kW charging power) located at 302 locations in Luxembourg, shown in 

Figure 1. We assume that the fast chargers are all 50 kW DC fast chargers and that the number of fast 

chargers to be installed is 10. The candidate locations are on the existing Chargy network (302 locations). 

As we have no empirical ride data from the operator, we generate random customer demand from the 

recent mobility behavior survey (Luxmobil, 2017) in Luxembourg, based on the probability of trip 

occurrences. The Luxmobil survey, which was conducted in 2017, surveyed 40,000 households in 

Luxembourg and 45,000 cross-border workers, with response rates ranging from 26% to 30%. The 

survey data contains anonymized trip chain information and individuals’ socio-demographic 

characteristics. We assume that the fleet size of the Flexibus service is 50 electric shuttles and that its 

daily customer demand is 1000, corresponding to 20 customers/vehicle/day. The spatial distribution of 

the trip requests is shown in Figure 2. Under this setting, the average customer waiting time and journey 

time are around 15 minutes and 36 minutes using gasoline shuttles, respectively. Note that the 

practitioner is encouraged to use one-week historical ride data to consider the spatial and temporal 

variability of demand.  

The characteristics of electric shuttles are hypothetically based on Volkswagen’s 8-seat 100% electric 

Tribus (https://www.tribus-group.com/e-mobility/). The battery capacity of the Tribus is 35.8 kWh, with a 

practical driving range up to 150 km. We assume that the energy efficiency is constant and is defined 

as the ratio of battery capacity and the practical driving range. The fleet is assumed to be equally 

distributed to 13 different operator depots, 1  as shown in Figure 1. The details of the simulation 

parameter settings are reported in Table 1.  

Table 1. The parameter settings of the Flexibus case study 

Simulation settings    EV and charging facility settings  

Number of customers 1000 Energy cost of charging2 0.2756 (euros/kWh) 

Number of DC fast chargers 

to be installed 

 

10 
Energy efficiency (𝜇)3 0.2387 (kWh/km) 

Fleet size 50 Battery capacity (B)1 35.8 kWh 

Capacity of vehicles1 8 pers./veh. Charging power (𝜑𝐿2)  22/60 (kW/min.) 

Vehicle speed 50 km/hour Charging power (𝜑DC fast)  50/60 (kW/min.) 

Planning horizon (𝑇)  6:30–22:00 Number of existing level-2 

public chargers  

 

814 

Charging decision epoch (∆)4  30 min. Number of depots 13 

   𝛽  0.025 𝑒𝑚𝑎𝑥  0.8𝐵  

   𝛾  0.5 𝑒𝑚𝑖𝑛  0.1𝐵  

  Predefined threshold to go 

recharge  

 

0.2𝐵  

Remark: 1. EV characteristics are based on a Volkswagen 100% electric-powered minibus with a 150 km range 

(https://www.tribus-group.com/e-mobility/). 2. Charging price is based on the current fare using Chargy’s plugs 

                                                           
1 We assume that the depots are located in the following municipalities: Bettembourg, Dudelange, Esch-sur-

Alzette, Mersch, Reckange-sur-Mess, Roeser, Rumelange, Walferdange, Sanem,  Garnich, Koerich, Steinfort, 

and Contern, based on Flexibus’s current service areas.  

 

https://chargy.lu/en/
https://www.tribus-group.com/e-mobility/
https://www.tribus-group.com/e-mobility/
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(https://www.eida.lu/en/chargy) with VAT. 3. Based on the driving efficiency of the Tribus (𝜇 = 35.8/150). 4. 

corresponding to the charging time from 𝑒𝑚𝑖𝑛 to 𝑒𝑚𝑎𝑥 of a Tribus at a DC fast charger.  

  
Figure 1. The spatial distribution of public charging stations in Luxembourg (Chargy network). 

 

 

https://www.eida.lu/en/chargy
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Figure 2. The spatial distribution of customer requests and vehicle depots. 

 

4.2. Dynamic ridesharing simulation using EVs 

In this section, we describe the EV-based dynamic ridesharing simulation platform and the vehicle 

routing and dispatching policy. The simulation platform extends our previous dynamic ridesharing 

simulation platform (Ma et al., 2019b) using the discrete event simulation technique in the environment 

of EVs considering a multiple queuing system. The simulator considers the dynamic ridesharing 

problem and uses a non-myopic vehicle dispatching policy to minimize the additional cost when 

inserting a new request on existing routes of vehicles. When a new request arrives, the dispatching 

center determines a list of candidate vehicles 𝑉′  that satisfy the following conditions: (1) energy 

feasibility, i.e., a vehicle is considered feasible if the remaining energy after serving all customers 

(including the new request) and returning to the depot is no less than a threshold 𝑒𝑚𝑖𝑛, and (2) recharge 

operation: a vehicle is feasible if it is not scheduled for recharge after serving all onboard customers. 

The vehicle dispatching policy is based on a non-myopic dispatching policy (Sayarshad and Chow, 

2015) that assigns a new customer to the vehicle (among candidate vehicles) with the least marginal 

system cost as in Eq. (19). 

{𝑣∗, 𝑥𝑡
𝑣∗

} = argmin𝑣∈𝑉′ [𝑐 (𝑣, 𝑥̅𝑡
𝑣) − 𝑐(𝑣, 𝑥𝑡

𝑣  )], (19) 

where 𝑐(𝑣, 𝑥) is a cost function with service tour 𝑥 of vehicle v defined as Eq. (20). 𝑥̅𝑡
𝑣 is the a posteriori 

tour of v after inserting the new request in its current tour 𝑥𝑡
𝑣. 

𝑐(𝑣, 𝑥) = 𝛼𝑇(𝑣, 𝑥) + (1 − 𝛼) [𝛽 𝑇(𝑣, 𝑥)2 + ∑ 𝑌̅𝑛(𝑣 , 𝑥)

𝑛∈𝑃𝑣

], 

(20) 

where 𝑇(𝑣, 𝑥) is the travel time of tour 𝑥. 𝑌̅𝑛(𝑣 , 𝑥) is the total waiting time and in-vehicle travel time 

for all passengers 𝑃𝑣  assigned to vehicle 𝑣 . 𝛼  is a weight between 0 and 1 as a trade-off between 

operation cost and customer inconvenience.  𝛽  is a parameter between 0 and 1 to consider future 

approximate system delays for the current vehicle dispatching decision. The reader is referred to Ma et 

al. (2018; 2019b) for details regarding setting the parameter 𝛽. 

 

4.3. Results 

We first present the results of the proposed charging management policy to validate the proposed 

methodology. Then we report the computational results of the bi-level fast-charging station location 

problem for the Flexibus case study. Finally, we evaluate the environmental benefit in terms of annual 

CO2 emission reduction due to fleet electrification.      

4.3.1. Numerical study of the charging management policy  

In this section, we compare the performance of the charging management policy with two reference 

policies. The first reference policy is referred to as the nearest charging station policy (NCP). This 

policy assumes that an idle EV goes to the nearest unoccupied charging station for recharge when its 

battery level is lower than a pre-defined threshold (20% of battery capacity). This policy is widely used 

in the state-of-the-art methods (Bischoff and Maciejewski 2014; Jung et al., 2014). The second 

reference policy is referred to as the first-come-first-served (FCFS) policy, which minimizes vehicle 

charging operation time based on instant current charging station state in a FCFS manner. This policy 

is similar to the real-time charging recommendation system for electric taxis (Tian et al., 2017), which 
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recommends a taxi to a specific charger to minimize vehicle idle time due to recharge. Under the FCFS 

policy, an idle EV goes to recharge immediately whenever the battery level is lower than the predefined 

threshold (20% of battery capacity). Under this policy, a vehicle v is assigned to charger 𝑗∗(𝑣, 𝑡) with 

the lowest estimated charging operation time at time 𝑡 as in (21). 

𝑗∗(𝑣, 𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝐽 {𝑡𝑖𝑗 +
𝑒𝑚𝑎𝑥 − 𝑒𝑣(𝑗, 𝑡′)

𝜑𝑗
+ 𝑊̃𝑖𝑗(𝑡)}, 

(21) 

where 𝑖 is vehicle v’s current location. 𝑒𝑣(𝑗, 𝑡′) is the battery level when arriving at charging station j at 

time 𝑡′ . 𝑊̃𝑖𝑗(𝑡)  is the expected waiting time of charger 𝑗  based on the occupancy information of 

charging stations at time 𝑡. 𝜑𝑗 is the charging power of charger 𝑗.  

We refer to the proposed charging management policy of Eqs. (5)–(16) as the optimal charging policy 

(OCP). The variant of the OCP policy considering only unoccupied chargers at the beginning of each 

decision epoch is referred to as the OCP-A policy.    

To take into account demand variability, we generate two data sets with 1000 and 2000 customers over 

24 hours, respectively. Each dataset contains 5 test instances, generated randomly from the Luxmobil 

survey data based on the probability of trip occurrence. The considered charging infrastructure includes 

the public Chargy network and 10 DC fast chargers. The locations of the 10 DC fast chargers are 

assumed to be around the drop-off locations of customers (Asamer et al., 2016) based on the k-means 

clustering method. We assume few charging needs from other private and commercial EVs, and thus 

these are ignored. Note that the optimal locations of DC fast chargers will be determined by solving the 

bi-level model in the next section. The results of the three charging management policies are compared 

in Table 2. The reported values are based on an average of 5 test instances for each demand intensity.  

We observe that the OCP and OCP-A policies have lower average charging operation times per vehicle 

per charging operation (54–57 minutes, column (1)+(2) in Table 2) compared to the NCP and FCFS 

policies (65–67 minutes) with 1000 customers. The total charging waiting times of the OCP and OCP-

A policies are lower compared to the NCP and FCFS policies (0–3.7 hours vs. 6–9.3 hours for one-day 

operations). When demand is doubled, the OCP-A policy performs best, with the lowest average 

charging operation time (62 minutes) compared to the other three policies (around 67 minutes for the 

NCP and FCFS; 76 minutes for the OCP). This shows that when charging demand is too high, the 

performance of the OCP policy is negatively influenced due to the inaccurate estimation of charger 

occupancy, resulting in additional queuing delays. We found that the OCP-A policy has almost zero 

charging waiting times for the fleet (0.2 hours) compared to those of the NCP (4 hours) and the FCFS 

(20 hours). When more fast chargers become available, the benefit of adopting the OCP-A policy for 

reducing charging operation times could be further increased.  

In terms of customer inconvenience, we found that the OCP and OCP-A policies result in a higher mean 

passenger waiting time (+ around 2 minutes) and journey time (+ around 4 minutes) compared to the 

NCP and FCFS policies, given demand from 1000 customers. The rate of served customers is about 5% 

lower compared to the NCP and FCFS policies. This might be explained by some spatial mismatch 

effect where the k-means clustering method locates the DC fast chargers in the southern region and EVs 

tend to use the DC fast chargers under the OCP-based policies. Consequently, trips distributed in the 

far eastern and northern regions tend to be unserved (see Figure 2). When customer demand is doubled, 

the OCP and OCP-A policies have similar passenger waiting times and journey times compared to the 

other policies. The rates of served customers of the FCFS policy and the OCP-based policies are much 

higher (66.4%-70.6%) compared to when using the NCP policy (55.5%). The latter is due to the fact 

that EVs tend to use nearby level-2 chargers to recharge, resulting in higher charging times and fewer 

vehicles available to serve customers. We can conclude that adopting the OCP-A policy can 

significantly reduce charging waiting time delays and vehicle charging times in a heterogeneous 

charging network for both demand scenarios. In terms of the impact of the proposed OCP and OCP-A 



14 
 

policies on customer inconvenience, this might be influenced by several factors such as the spatial 

distribution of customer demand, fleet configuration, vehicle driving range, and charging infrastructure 

configurations. Thus, we adopt the OCP-A policy as our charging management policy to determine the 

optimal fast charging station locations in the next section.  

Table 2. System performance of different charging policies. 

Number 

of 

customers 

Charging 

policy1 

Charging operation Customer inconvenience 

Average 

charging 

waiting 

time2 (1) 

Average 

charging 

time2 (2) 

(1)+(2

) 

Total 

charging 

waiting 

time of 

the fleet 

(hours) MWT3 MJT4 

Rate of 

served 

customers 

1000 NCP 2.4 65.1 67.5 6.0 14.5 35.6 98.6% 

 FCFS 3.7 61.6 65.3 9.3 14.7 35.6 98.4% 

 OCP 1.5 52.5 54.1 3.7 17.2 39.7 94.0% 

 OCP-A 0 57.1 57.1 0.0 16.6 39.0 93.0% 

2000 NCP 1.9 66.7 68.6 4.0 30.1 54.5 55.5% 

 FCFS 6.3 62.4 68.8 20.0 30.7 55.3 70.6% 

 OCP 16.7 59.2 75.9 50.3 29.8 55.0 66.4% 

 OCP-A 0.1 62.0 62.1 0.2 29.3 54.4 68.1% 
Remark: 1. NCP: nearest charging station policy; FCFS: first-come-first-served policy; OCP: optimal charging 

policy; OCP-A: optimal charging policy using unoccupied chargers only. 2. Average charging waiting time and 

average charging time are measured as minutes/recharge/vehicle. 3. MWT:  Mean passenger waiting time 

(minutes). 4. MJT: Mean passenger journey time (minutes). 4 The average time of a simulation run is around 

14.1 and 19.8 minutes for 1000 and 2000 customers under the OCP-A policy, respectively.  

 

4.3.2. Optimal fast-charging station locations and the environmental benefits of the electrification of 

the Flexibus service 

The bi-level fast-charging station location problem is solved by the SO method with the OCP-A 

charging management policy. We run the SO method several times with random initial solutions until 

the obtained solutions cannot be improved. The convergence result of the SO method is shown in Figure 

3. We observe that the SO method can effectively explore the global minimum with few expensive 

function evaluations (lower-level simulation runs). We retain the optimal value of the objective function 

as 7026.63. This means that the total charging operation time for a fleet of 50 electric 8-seat minibuses 

to serve 1000 customers per day requires around 117 charging hours using exclusively the current public 

Chargy network and 10 DC fast chargers. The spatial location of the DC fast chargers is shown in Figure 

4. We observe that 9 DC fast chargers are located around Luxembourg City, Esch-sur-Alzette, and 

Bettembourg, where customer demand is higher. Only one DC fast charger is located in the north of 

Luxembourg.  
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Figure 3. The convergence result of the bi-level fast-charging station location problem. 

 

 
Figure 4. Spatial distribution of the optimal DC fast-charger locations. 

 

We further evaluate the benefit of installing the 10 DC fast chargers in reducing total daily charging 

operation time (including travel time to reach chargers, waiting time, and charging time) by considering 

customer demand uncertainty. We vary customer demand from 500 to 2000, for which we generate 5 

test instances from the 2017 Luxmobil survey data for each scenario. The result is shown on the left 

side of Figure 5. We found that installing an additional 10 DC fast chargers on the existing Chargy 
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network can effectively reduce total charging operation time from 10.8% to 27.8% compared to that 

using the public Chargy network only. The practitioner can further conduct a sensitivity analysis to 

analyze the trade-off between the number of chargers and charging-time savings to plan their charging 

infrastructure.      

In terms of the potential environmental benefit of electrifying the flexible bus fleet, we compare the 

annual CO2 emission savings if the operator switches from its current gasoline shuttles to electric ones. 

We assume that operating EVs produces zero CO2 emissions (Lokhandwala and Cai, 2020) while 

operating gasoline shuttles produces 147 grams of CO2 per kilometer travelled. This estimation is based 

on the EU fleet-wide average emission target from 2020 onward.2 We conduct 5 simulation runs on the 

test instances for each demand scenario and average the performance metrics. When daily ride requests 

vary from 500 to 2000, the average kilometers travelled per vehicle vary from 182 to 534 km, given a 

fleet size of 50 gasoline shuttles. Considering the current 6-days per week operation and 52 weeks/year, 

we can obtain the annual CO2 emission savings when electrifying the entire fleet. The right side of 

Figure 5 shows that such electrification would enable the operator to reduce annual CO2 emissions by 

417 tons (500 customers/day) to 1225 tons (2000 customers/day). 

 
Figure 5. Environmental impact of the electrification of the flexible bus service (on the right); impact 

of the installation of 10 DC fast chargers on total daily charging time under different customer 

demands (on the left).    

 

5. Conclusion and discussions 

 

Electrifying the conventional gasoline fleet of a ridesharing service requires considering the 

management of daily charging operations and charging infrastructure planning to reduce charging 

operation delays. Existing charging station location planning methods focus mainly on private EVs or 

consider simple nearest charging station policies for recharge. However, none of the current studies 

have addressed the charging location planning problem by jointly considering optimal charging 

management from the fleet operator perspective. 

In this study, we propose a new vehicle-charging station assignment policy to minimize total vehicle 

idle time due to charging operations for dynamic ridesharing services. The proposed online charging 

policy is integrated into a bi-level optimization-simulation model to optimize a number of fast-charging 

                                                           
2 https://ec.europa.eu/clima/policies/transport/vehicles/vans_en  

https://ec.europa.eu/clima/policies/transport/vehicles/vans_en
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station locations under stochastic customer demand. Vehicle waiting time at charging stations is 

considered as a multi-server queuing system with a vehicle’s stochastic charging demand and the 

heterogeneous characteristics of charging infrastructure. The proposed model allows optimizing 

charging station planning for transport network companies by integrating an optimal charging 

management strategy to minimize total charging times of daily operations. As the bi-level optimization 

problem is a difficult combinatorial optimization problem, we propose a surrogate-assisted optimization 

method to find good solutions.  

We apply the proposed method to a realistic flexible bus service case study in Luxembourg. We find 

that the proposed dynamic vehicle-charging assignment policy can effectively reduce vehicle idle time 

and waiting times compared to the state-of-the-art charging strategies. We find that by installing 10 

additional DC fast chargers at optimal locations, total charging time savings of 10.8% to 27.8% 

(depending on demand intensity) for a fleet of 50 (8-seater) minibuses can be obtained compared to 

using Luxembourg’s public Chargy network only. We further evaluate the environmental benefit of 

electrifying the gasoline fleet, finding that the operator can be expected to reduce CO2 emissions by up 

to 1225 tons per year given the test scenario with 2000 customers/day. 

Several research perspectives can be addressed in the future. First, the fast charging location problem 

can be extended to incorporate heterogeneous charger types given budget constraints. Second, one can 

incorporate the uncertainty related to existing charging infrastructure availability based on time-

dependent occupancies. In doing so, the obtained charging delays can better consider the charging needs 

of other competing EVs. Third, the practitioner can apply the model to planning charging infrastructure 

based on historical ride data over a longer period to account for demand variability. Moreover, deepened 

sensitivity analyses can be conducted to evaluate the trade-offs of charging operation cost savings and 

charging infrastructure investment costs. 
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