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Abstract

We study the effects of Peru’s social pension programme Pension 65 on mortality. The

programme provides a lifetime pension equivalent to 32 US dollars per month to individu-

als aged 65 and older who do not have other pensions and are officially classified as extreme

poor. The analysis relies on survey data obtained at the baseline, which we match to mor-

tality records for the period 2012 to 2019. We exploit the discontinuity around the welfare

index used by the programme to determine eligibility, and estimate intention-to-treat effects

in a regression discontinuity setting. We find that after seven years, the programme can re-

duce mortality among eligible people by about 11.4 percentage points. The programme

could also increase the life expectancy of eligible people by one year. The results and

back-of-the-envelope calculations indicate that the policy is cost effective.
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1 Introduction

Social security participation is low in developing countries, mostly due to the existence of large
informal labour markets and the high predominance of precarious jobs in which pension and
health contributions are not compulsory. As populations are rapidly becoming older in these
countries, a popular solution for governments has been the establishment of social pension
programmes providing pension transfers unrelated to histories of social security contributions.
These schemes, also known as non-contributory pension (NCP) programmes, provide monetary
transfers targeted at the elderly poor (although some are universal) who do not have contributory
pensions and have reached retirement age. The transfer amounts tend to be small relative to the
national average income or GDP per capita, but they are not trivial for the eligible elderly poor
(Huang and Zhang, 2021).

There is an important body of literature studying the effects of social pensions in low and
middle-income countries, although more attention has been paid to labour and economic out-
comes and less to health and welfare domains. Some distinctive pension programmes that have
been widely studied are those implemented in South Africa (Duflo, 2000; Case and Deaton,
2001; Duflo, 2003), Brazil (Barrientos et al., 2003; de Carvalho-Filho, 2008) and Mexico
(Aguila et al., 2015; Juarez and Pfutze, 2015). As these pensions are granted late in life –
that is, when people are more fragile and health deteriorates quickly – they could contribute to
the survival of individuals via well-known income effects on life expectancy. Indeed, keeping
people alive is an important outcome for public intervention, let alone that it is a truly objective
health outcome at advanced ages.1

In this paper, we study the causal effects of Peru’s non-contributory pension programme,
Pension 65, on elderly mortality. The programme provides a pension equivalent to 125 soles
per month, equivalent to approximately 32 US dollars, or 13% of the official minimum wage in
2021. Although this amount may seem low, it could be important among the poor. For example,
the transfer represents 62% of the national extreme poverty line in 2021 (or 33% of the national
poverty line). We exploit a survey fielded in 2012, intentionally designed to apply a Regression
Discontinuity Design (RDD) to uncover the causal effects of the programme. We match this to
administrative records for the programme and mortality statistics from population registers for
the 2012-2019 period.

Evidence regarding the effects of social pensions on mortality is limited and mixed. In de-
veloped economies, for example, Balan-Cohen (2008) finds that the Old Age Assistance (OAA)
programme in the US is associated with a sizeable decrease in male mortality over the age of
64 after 1940. By contrast, Stoian and Fishback (2010) find that this programme had no signifi-

1In general, the positive association between income and health is well established in the literature (see, for
instance Case et al., 2002; Deaton, 2002; Gerdtham and Johannesson, 2004; Smith, 2007; Smith and Goldman,
2007; Von Gaudecker and Scholz, 2007; Belloni et al., 2013), but the literature is less extensive when it comes to
identifying causal effects of income on health (see, for instance Smith, 1998; Deaton and Paxson, 1998; Smith,
1999; Lenhart, 2019).
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cant impact on American urban mortality rates before 1940. For Canada, Emery and Matheson
(2012) find no impact of a means-tested social pension programme on mortality for people aged
65-69, but they find that the universal social pension programme for people aged 70 and above
(Old Age Security, OAS) reduced mortality by 4.2%.2

With regard to studies focusing on low or middle-income countries, Cheng et al. (2018) re-
port very modest evidence for the long-term effects of China’s New Rural Pension Scheme
(NRPS) programme on mortality risk, whereas Huang and Zhang (2021) find a mortality-
income elasticity of -0.38 for the same programme based on 1-year mortality. For Chile’s social
pension programme, Pension Basica, Miglino et al. (2022) find an elasticity of -0.386 based on
4-year mortality. For Mexico’s social programme, Progresa, Barham and Rowberry (2013) find
an elasticity of -0.18 based on 1-year mortality of elderly individuals, while Jensen and Richter
(2004) find an elasticity of -0.244 based on 2-year mortality for male pensioners aged 60 in
Russia who suffered from pension arrears.

The Pension 65 programme gives a lifetime pension to people aged 65 and above who
do not have any other pension and reside in a household classified as extreme poor by the
national targeting system, SISFOH. This classification is based on a continuous welfare index
(the SISFOH score) given to households and compared with cutoff points determining three
groups: extreme poor, non-extreme poor and non-poor. To estimate the causal effect of the
programme on mortality, we exploit a discontinuity resulting from the eligibility rule of the
SISFOH index on a sample of just eligible (extreme poor) and just ineligible (non-extreme
poor) individuals, located each side of and very close to the eligibility threshold. We provide
evidence rejecting manipulation of the SISFOH score and argue that the eligibility condition is
as if we were to randomly allocate treatment and control conditions locally around the threshold
of eligibility. We estimate the intention-to-treat (ITT) effect of the programme and find that the
7-year mortality rate of eligible individuals is reduced by 11.4 percentage points, implying a
substantial reduction of 56.7% with respect to the mortality rate of ineligible individuals at the
eligibility threshold.

This result is robust to various checks, including the addition of pre-treatment health condi-
tions, nutrition quality and objective markers such as anaemia, hypertension and anthropometric
measurements associated with mortality risk. The mortality effect holds under different band-
widths, observation periods, model specifications (including the assessment of the hazard ratio
of mortality rate in survival models), polynomial orders and various other robustness, falsifi-
cation and validation tests. Relying on mortality parametric functions, we estimate that the
programme could potentially increase the life expectancy of eligible individuals by about a
year. This is a very important policy result for an income transfer programme. The cost-benefit
analysis reveals that the cost for increasing life expectancy is well below (about 19-30%) the
estimates of the value of a statistical life. Thus, the programme is cost effective.

2We can also point to the results of social pensions reducing mortality by Mostert et al. (2022) in South Africa;
and Arno et al. (2011), Galofré-Vilà et al. (2022), Engelhardt et al. (2022) in the US.
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Furthermore, we compute a mortality-income elasticity of -0.486, which is higher than the
value found other studies. We argue that this could be because our observation period for
mortality (7-year rate) is longer than the period used in other papers. In addition, we analyse
very poor elderly people who have experienced multiple deprivations during their lifetime with
inadequate access to healthcare, nutrition and education, all of which lead to a higher mortality
risk at the start of the programme. Thus, the effect of the income transfer could be really
important (and more elastic) in preventing death for the very poor.

Among the potential mechanisms behind the effect of the transfer on mortality, Bernal et al.
(2022) – who use the follow-up of our survey in 2015 – find that Pension 65 has impacts on
reducing anaemia, and increasing nutrition quality, food expenditures and healthcare utilisation,
as well as improving mortality risk markers. As all these variables have well-known effects on
mortality, we consider them as leading mechanisms for the effect on mortality of the transfer.

The remainder of this paper is organised as follows. Section 2 describes the NCP programme
while Section 3 presents the data. Section 4 explains the empirical strategy, and Section 5
analyses and discusses the results, as well as examining policy impacts. Section 6 presents
and discusses evidence for validation, falsification and robustness checks. Lastly, Section 7
concludes.

2 Non-contributory pensions in Peru

Pension 65 is a government programme that provides social pensions to individuals aged 65 and
above who do not have any other pension and reside in a household classified as extreme poor by
the national targeting system SISFOH. The scheme is part of the wave of new non-contributory
pension (NCP) programmes launched in Latin America during recent years. Pension 65 pro-
vides a bi-monthly transfer of 250 soles to the recipients and facilitates registration in the public
health system (Seguro Integral de Salud, SIS), which covers health at no cost, although it can
incur some out-of-pocket expenditure. In principle, all individuals classified as poor by SIS-
FOH are eligible for SIS – that is, both the extreme poor and the non-extreme poor – but it is
likely to involve relatively lower participation by non-extreme poor people in SIS.

The pension amount has not changed since the implementation of the programme at the
end of 2011. While the transfer was equivalent to 47 US dollars in 2012, this represented 32
US dollars in 2021. Even though the transfer has lost about 31% of purchasing power, it can
be a relatively important source of income for poor individuals. For example, by looking at
the figures from Peru’s National Institute of Statistics (INEI) for monetary poverty lines, we
note the transfer represented 83% of the national extreme poverty line and 44% of the national
poverty line in 2012; while in 2021 it represented 62% and 33%, respectively. In rural areas,
these percentages were 98% and 59%, respectively. For 2012, the transfer represented 17% of
the minimum wage, 14% of the national household income per capita in urban areas and 33%
in rural areas.
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The programme reached 568,599 recipients in 2021, representing about 19% of the pop-
ulation aged 65 and above and involving a cost of 0.10% of GDP. These percentages have
not changed substantially since 2015, the time at which the programme reached maturity with
slightly over half a million recipients. The programme started enrolling individuals living in the
poorest districts of six prioritised departments, and in 2012, the roll-out continued to include 14
departments where a previous small-scale and short-lived pilot NCP programme had previously
been in place.3

As mentioned earlier, SISFOH (Sistema de Focalización de Hogares in Spanish) is the na-
tional targeting system in Peru. It maintains a national register of socio-economic conditions
of households in order to assess whether a household could be eligible for social programmes.
The SISFOH relies on data collected by government officials using a standardised question-
naire. The main outcome of SISFOH is the computation of a multidimensional welfare index
(the SISFOH score) capturing the socio-economic conditions of households. This is compared
with regional cutoffs to determine three poverty statuses: extreme poor, non-extreme poor and
non-poor. This classification is valid for three years in urban areas and four years in rural areas.
4 The largest collection of data for the SISFOH register took place in 2012. In the current
study, we exploit a survey in which the sampling framework was based on that data collection.
The variables collected for the register include the access to and quality of basic infrastructure
(e.g., water, electricity and sewage), fuel type and quality, material quality of different parts
of the dwelling, home overcrowding, education attainment, home assets and access to health
insurance.

It is important to note that the households do not know their SISFOH score; they are only
made aware of their classification in one of the three mentioned poverty groups. Further, the
score is determined independently from the regional cutoff points, which are undisclosed to the
public. The methodology to compute the score is also complex and very difficult to grasp, if a
household wanted to manipulate their answers to become eligible for a social programme. Ma-
nipulation of eligibility is a serious threat to the identification of causal effects, but we provide
arguments and statistical evidence in Section 6 that there is no manipulation problem that could
invalidate our empirical design and results.

Apart from the roll-out censuses implemented to provide information to the SISFOH reg-
ister, individuals can apply at municipality offices to obtain a poverty SISFOH classification.
Once eligibility is confirmed, enrolment into Pension 65 can take about 25 days. As mentioned
in Bernal et al. (2022), other methods for programme enrolment include i) information cam-
paigns that are jointly organised by local governments and officers from the programme, and
ii) a search (carried-out by programme officials) for potential recipients who have not received
their SISFOH classification or who do not yet have not their identity document (Documento

3The Bono Gratitud pilot programme ran between October 2010 and August 2011 and reached 21,783 par-
ticipants distributed between 14 departments. The transfer was equal to 100 soles a month, and the eligibility
conditions were being aged 75 and above, and residing in a household classified as extreme poor.

4For more methodological detail about the welfare index algorithm, see Valderrama and Pichihua (2011).
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Nacional de Identidad), which is compulsory for eligibility checks.

3 Data

Our study exploits survey data specifically designed for the impact evaluation of Pension 65.
We match this (at the individual and/or household level) to three administrative data sources: i)
mortality records for 2012-2019, ii) Pension 65 records and iii) SISFOH registers. The primary
data source is the Survey of Health and Well-being of the Elderly, known as ESBAM (Encuesta

de Salud y Bienestar del Adulto Mayor). The sample framework of the survey is intentionally
designed to implement a Regression Discontinuity Design (RDD) to study the causal effects of
the programme. The baseline survey was carried out between November and December 2012,
and the follow-up survey was held between July and September 2015. ESBAM collects infor-
mation covering several objective and subjective health measurements, demographics, income
and expenditure – both for each elderly individual and the household. The information is col-
lected via face-to-face interviews, while medical technicians collect data for anthropological
measurements, arterial pressure and blood samples from the elderly individuals.

The sample framework design takes into account 12 out of the 24 departments of Peru,
because these regions had completed the collection of information for the SISFOH registers.
These departments are Amazonas, Ancash, Cajamarca, Cusco, Huánuco, Junín, La Libertad,
Loreto, Pasco, Piura, Puno and Lima (provinces). The other two conditions for being part of the
sample framework are i) households should be located within 0.30 standard deviations of the
SISFOH score to the right or to the left of the threshold for extreme poverty, and ii) households
should have at least one member aged between 65 and 80. The idea underlying this design is to
try to observe households that are as similar as possible within the region around the eligibility
threshold for Pension 65. 5 In fact, Figure B–1 in the Appendix shows clearly that the ESBAM
sample is very local when we compare it with the national distribution of the SISFOH score.
That is, the sample is local in the sense that the SISFOH score for the ESBAM individuals is
located just around the eligibility threshold.

The initial ESBAM sample size amounts to 4,238 individuals.6 We match this data set to
administrative records for the programme, SISFOH registers and mortality records using the
National Identification Document number, which is included in the baseline of ESBAM. The
Pension 65 records allow us to identify the recipients of the programme and when they re-

5More precisely, the sampling design consists of a two-stage random selection procedure: geographic clusters
in the first stage and households with at least one older adult in the second stage. The primary sampling units
(PSU) are defined as the census units in urban areas (blocks) and villages (centro poblado) in rural areas. The
selection of PSU within each department and area takes place in the first stage according to a selection probability
that is proportional to the total number of households, whilst the random sampling of households takes place in the
second stage.

6The sample size is determined with the Minimum Detectable Effect (MDE) approach, in which the chosen
sample allows us to detect an effect as long as it is above a certain threshold. The MDE in ESBAM is equal to 0.15
standard deviations, while the statistical power is set at 90% and the significance level is set at 5%.

5



ceive the transfer. The SISFOH register provides information about the eligibility score and
the poverty group classification of the households. The mortality records are drawn from the
National Population Register (RENIEC, from its Spanish name) and allow us to identify the sur-
vival or death of each individual between December 2012 and December 2019. The information
includes the date of death, but not the cause. After dropping observations with inconsistent in-
formation or with missing data on key variables, the sample size is reduced to 3,885 individuals.
The dropped observations include 137 individuals who were already recipients at the ESBAM
baseline, 66 who declared in the survey that they were receiving contributory pensions, 59 who
were classified as non-poor in the SISFOH registry, 23 with no SISFOH score information,
three who were aged 81 and older, one who was deceased at baseline and 64 individuals who
we could not identify in any records.

Table 1 shows the distribution of our sample according to the eligibility conditions and
whether the individual survived or died between 2012 and 2019. From the 2,525 eligible indi-
viduals in 2019, 432 had died and had 2,093 survived, showing a raw mortality rate of 17%.
From the 1,360 ineligible individuals, 245 had died, and 1,115 had survived, implying a mor-
tality rate of 18%. The table also reports mortality differences across age groups and by gender.
As expected, we find that women have a lower mortality rate than men (15% and 19%, respec-
tively), and relatively younger individuals have a lower mortality rate than older individuals (the
mortality rate is 11%, 18% and 31% for the age groups 65-70, 71-75 and 76-80, respectively).

Table 1: Distribution of observations in initial ESBAM sample

Sex Age in 2012
Overall

Male Female 65-70 71-75 76-80

Overall 2,118 1,767 1,901 1,204 780 3,885
Survivor 1,705 1,503 1,686 984 538 3,208
Dead 413 264 215 220 242 677
Mortality rate 19% 15% 11% 18% 31% 17%

Eligible 1,406 1,119 1,206 803 516 2,525
Survivor 1,135 958 1,075 659 359 2,093
Dead 271 161 131 144 157 432
Mortality rate 19% 14% 11% 18% 30% 17%

Ineligible 712 648 695 401 264 1,360
Survivor 570 545 611 325 179 1,115
Dead 142 103 84 76 85 245
Mortality rate 20% 16% 12% 19% 32% 18%

Notes: The sample is composed of individuals observed in the baseline of the 2012
ESBAM survey. After dropping observations with inconsistent information or miss-
ing key information, the initial sample size is set to 3,885 individuals.

Table B–1 in the Appendix provides summary statistics of the initial sample for the main
variables used in this paper. Table B–2 shows the summary statistics for the sample we exploit
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in the econometric results of our regression discontinuity analysis. This sample is based on
the determination of optimal bandwidth according to Calonico et al., 2015 (see Section 5.1 for
details). In this last table, which includes eligible and ineligible people who are even closer to
the threshold, we observe that the mortality rate is 15.8% among eligible individuals and 17.7%
among their ineligible counterparts.

An important feature of the ESBAM sample is that it is composed of very poor elderly
individuals, in contrast to surveys used in other studies to study the mortality effects of (social)
pensions that generally consider national surveys either focused on the total population or on
the elderly population. The magnitude of this composition can be seen in Figure B–2 in the
Appendix, reporting the ESBAM and national distribution of household income per capita for
2012. We note that about 60% (or 70%) of the ESBAM sample have income levels below the
bottom 20% (or 25%) of the national income distribution. It is important to bear in mind this
characteristic of our sample when we analyse and discuss our econometric results, because of
potential important reductions in mortality due to income effects among poor people.

4 Empirical strategy

As explained before, households are given a score based on an official algorithm that takes
into account their socioeconomic conditions and a set of weights for each socioeconomic vari-
able. The comparison of the score with official regional cutoffs leads to the classification of
households into extreme poor, non-extreme poor and non-poor. We argue that this classification
provides a natural experiment assigning eligibility to the programme. Thus, according to the
centred score (the SISFOH score minus the cutoffs for extreme poverty), the individuals located
to the left of the extreme poverty cutoff point (centred at zero) are eligible for the programme,
whilst those located to the right are ineligible. The centred SISFOH score acts as the running
variable, measuring the distance of an observation to the eligibility cutoff. These features of the
programme facilitate the use of an RDD to analyse the potential impact of Pension 65 on the
eligible population.

Figure 1 plots the probability of being a recipient of the programme at any time within the
2012–2019 period as a function of the running variable. The graph shows that the probabilities
of being treated around the eligibility cutoff exist and are different on each side of the thresh-
old, which are assumptions required in RDD for causal identification (Hahn et al., 2001). We
observe that individuals becoming eligible for the programme by just crossing the cutoff point
have a substantial increase (of approximately 50%) in the probability of becoming recipients.
The probability limit of the eligible individuals to be treated is 90%, while the same probabil-
ity for the ineligible individuals is 40%. Thus, being eligible indicates a high probability of
receiving the benefits from the programme.

It is worth noting that the change in the probability of being treated differs depending on the
period evaluated. As can be seen in Table B–3 and Figure B–3 in the Appendix, the strongest
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association between eligibility and being a recipient occurs after three years of exposure (the
probability change was 85% in 2015).7

Figure 1: Probability of being a Pension 65 recipient
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Notes: The graph plots the probability of receiving Pension 65 at any time in the period
2012-2019 as a function of the running variable (SISFOH score minus eligibility cutoffs).
The support of the running variable has been partitioned into exclusive bins. The number
of bins is selected optimally to minimise the integrated mean square error of the underlying
regression function, and the location is based on quantile spaced method using spacings
estimators as suggested in Calonico et al. (2015). The square points indicate the local mean
of the outcome at the midpoint of each bin. The bars represent the 95% confidence intervals
of the local means. The solid lines are linear regressions that fit separately on each side
of the threshold. Observations to the left (right) of the vertical dashed line are eligible
(ineligible) for the programme.

The potential effect of the programme is identified by the difference between the average
value of the outcome to the left of the extreme poverty cutoff (eligible) and the average outcome
to the right of the cutoff (ineligible). This is the Average Treatment Effect (ATE), which can be
estimated in RDD using the following expression:

AT E = lim
z→z+0

E(yi|zi = z)− lim
z→z−0

E(yi|zi = z) (1)

where yi is the outcome, zi is the running variable and z0 is the cutoff. When treatment is not
7We also note that the proportion of treated individuals from the ineligible group of the baseline starts to

increase after 2016, which coincides with a change in the SISFOH methodology (see Table B–3 in the Appendix).
While there are 2,243 recipients accumulated up to 2015 (regardless of survival and eligibility conditions), there
are 2,342 and 2,746 recipients accumulated up to 2016 and 2019, respectively. Thus, it is likely that the new
SISFOH conditions of 2016 facilitated access to the programme for individuals who had previously been deemed
ineligible but were very close to the eligibility threshold.
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deterministically assigned, eligibility is not perfectly correlated with the treatment condition,
and hence equation 1 is the intention-to-treat (ITT); that is, the effect on the individuals located
just to the left of the threshold. ITT measures the impact of treatment eligibility, as determined
by the threshold rule. One approach to estimate equation 1 is comparing means in a range of z
on the left and right of the threshold. However, if the slope of E[yi|zi] is non-zero on either side
of the threshold, these averages will be biased estimates of the actual averages at the limit, as
zi tends to z0. In practice, ITT estimates are typically formed by parametric fitting functions of
E[yi|zi,zi ≥ z0] and E[yi|zi,zi ≤ z0] in the region around the threshold. Assuming linearity, the
following econometric specification can be used to find the expected effects of the programme:

E[yi|zi] = β0 +β1 ·1[zi < z0]+β2 · [zi − z0]+β3 · (zi − z0) ·1[zi < z0] (2)

where β2 is the slope of the line to the right of the threshold, β2 +β3 is the slope of the line to
the left of the threshold and β1 is the difference at the cutoff (Imbens and Lemieux, 2008).

We use equation 2 to estimate the ITT of the programme on the mortality rate by means
of linear regressions. In this case, the dependent variable takes the value of 1 if the individual
has died and the value 0 if the individual has survived at a given period. In our main setup,
we consider mortality observed in the whole 7-year period of analysis between 2012 and 2019.
Therefore, yi = 1 if the individual died anytime in 2012–2019 and yi = 0 if the individual has
survived at 2019. Auxiliary regressions will allow us to assess mortality at different periods. In
addition, we include a vector of covariates in further regressions as a way to control for demo-
graphics and, importantly, for initial health conditions. We estimate the error terms clustering
at the Primary Sampling Unit of the survey design.8 Furthermore, in all regressions we apply
a triangular weighting kernel in the distance from the RD cutoff (Calonico et al., 2014); that
is, the observations closer to the eligibility threshold have a larger weight, whilst those further
away from the threshold have a smaller weight.

Estimating the ITT effects for some relevant groups could be informative about how het-
erogeneous the effects of the program are on the mortality of distinctive groups. For this aim,
we use equation 3, where τi,s is an indicator variable that identifies a person i who belongs to
the sub-population s. In particular, we estimate effects for sub-populations grouped by sex,
rural/urban areas, education (no schooling or some schooling) and age (65–70 or 71–80). The
effects for the sub-populations of each group are quantified by β1 +β5 when τi,s = 1, and β1

when τi,s = 0.

E[yi|zi] = β0 +β1 ·1[zi < z0]+β2 · [zi − z0]+β3 · (zi − z0) ·1[zi < z0]

+τi,s(β4 +β5 ·1[zi < z0]+β6 · [zi − z0]+β7 · [zi − z0] ·1[zi < z0]) (3)

8We justify this clustering to deal with design uncertainty, as recommended by Abadie et al. (2020).
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The data used to linearly estimate the ITT effects of Pension 65 can also be organised to
estimate survival models. In this case, the data is organised so that we can observe whether
the individual has survived or died at each month in the 2012–2019 period. According to Bor
et al. (2014), the ITT estimator from the setting of discontinuous regressions can be easily
extended to survival models. Continuity in the conditional expectation functions for each of
the potential outcomes (E[yi(0)|zi = z] and E[yi(1)|zi = z]) is sufficient for the identification of
regression parameters across the class of generalised linear models, which relate the conditional
expectation to a linear model via a continuous link function, such as the logarithm or logit. In
this way, for applications to survival analysis, equation 2 can be adapted to parametric and
semiparametric models that specify the hazard as a function of the assignment variable and
time. In particular, the hazard regression models can be made linear with the log-hazard by
replacing E[yi|zi] in equation 2.

We use equation 4 to run survival models and estimate the ITT effect of the programme on
the hazard ratio.9 We use the logarithm of the risk of death (h(t)) as the dependent variable and
assume a Gompertz-type parametric model, as is usually employed in the relevant empirical lit-
erature (see, for example, Chetty et al., 2016; Dodd et al., 2018; Olivera, 2019; Castellares et al.,
2020 and Kulinskaya et al., 2020). We run sensitivity checks, including the use of alternative
parametric functions such as Weibull and exponential.

log[h(t)] = log[h0(t)]+β0 +β1zi +β2D+β3ziD+ εi (4)

As mentioned before, we justify the use of the ITT on the large jump observed in the dis-
continuity around the eligibility threshold shown in Figure 1. In order to provide robustness
for the validity of our identification, we perform various checks in Section 6. Thus, we assess
the validity of the RDD assumptions, as well as the stability and sensitivity of our estimated
effects. All these tests assure us that we are indeed identifying a causal effect of the programme
on mortality.

5 Results

5.1 Linear ITT effects

The main results of the ITT effects of Pension 65 on the mortality rate are reported in Table 2.
The dependent variable takes the value of 1 if the individual dies at any time within the period
2012–2019 and 0 if the individual survives. The first column utilises the full sample of running
variable around the eligibility threshold. In this case, we find that the mortality rate of the

9The proportional hazard model assumes that h(t) is estimated by h(t) = h0(t) ·exp(β0 +β1zi +β2D+β3ziD+
εi), where h0(t) is a baseline hazard function that is assumed to be a Gompertz Distribution.
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eligible individuals is 5.6 percentage points (pp) lower than that of ineligible individuals. The
mortality rate of ineligible people is 18.2 pp, implying that the programme could potentially
reduce the mortality rate of the eligible individuals by about 31% (5.6/18.2). However, smaller
bandwidths — where individuals are more alike on both sides of the eligibility threshold —
could help to reduce the potential bias of the estimations. Column 2 shows the results for a
bandwidth of +/- 0.20, which includes approximately half of the sample. For this sample, the
mortality rate of eligible individuals is reduced by 8.3 pp, while that of ineligible people is 19.5
pp.

Table 2: Effect of Pension 65 on mortality rate

(1) (2) (3)

Intention-to-treat (β̂1) -0.056 -0.083 -0.114
(0.028) (0.038) (0.045)
[0.047] [0.028] [0.011]

Constant (β̂0) 0.182 0.195 0.201
(0.022) (0.038) (0.035)
[0.001] [0.028] [0.001]

Bandwidth +/- 0.330 +/- 0.2 +/- 0.145
Observations 3,885 2,104 1,577
Percentage Sample Full sample 54% 41%

Notes: The table reports the ITT estimates for mortality observed in 7
years (Equation 2)). The models use triangular kernel and local linear
polynomial. The first model uses the full sample, which has a bandwidth
of +/- 0.330. The second uses about half of the sample size, which has
a bandwidth of +/- 0.2. The third uses the optimal bandwidth for point
estimation as suggested by Calonico et al. (2015). The standard errors are
clustered by the Primary Sampling Unit (PSU) of the sampling framing
and are indicated in parentheses. P-values are reported in brackets.

In order to reduce the risk of obtaining biased estimators due to incorrect choice of band-
width, in the third column of Table 2 we implement the data-driven procedure of Calonico et al.
(2015) to obtain the optimal size of the bandwidth. In what is our preferred model, we observe
that the mortality rate of eligible individuals could decline by 11.4 pp, implying a substantial
reduction of 56.7% (0.114/0.201) with respect to the mortality rate of ineligible individuals.10

Figure 2 shows graphical evidence of the programme’s ITT effect on the mortality rate.
This figure employs the optimal bandwidth obtained in the last regression of Table 2 and clearly
shows the reduction in the probability of dying when an individual crosses the eligibility thresh-
old.

10The resulting optimal bandwidth is +/- 0.145, which we maintain for all further regressions. In any case, Figure
D–4 in the Appendix plots the ITT effects for various bandwidths, including our optimal data-driven bandwidth.
The estimates are always statistically significant and negative, although the magnitude of the effect tends to be
smaller for wider bandwidths.
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Figure 2: Intention-to-treat effects on mortality
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Notes: The graph plots the probability of dying after seven years as a function of the running
variable (SISFOH score minus eligibility cutoffs). The support of the running variable has
been partitioned into exclusive bins. The number of bins is selected optimally to minimise
the integrated mean square error of the underlying regression function, and the location is
based on quantile spaced method using spacings estimators as suggested in Calonico et al.
(2015). The square points indicate the local mean of the outcome at the midpoint of each
bin. The bars represent the 95% confidence intervals of the local means. The solid lines are
linear regressions that fit separately on each side of the threshold. Observations to the left
(right) of the vertical dashed line are eligible (ineligible) for the programme.

It is a well-known fact that mortality has gradients with age and sex, and therefore con-
trolling for these covariates in the regressions may reduce potential bias arising from the com-
position effects of our sample. Moreover, the ESBAM survey includes various measurements
related to health status and mortality risk at the baseline that may control for initial health con-
ditions and risk factors.11 Therefore, we can reduce any potential estimation bias arising from
initial differences between eligible and ineligible people on health status and risk factors. Table
3 reports the estimation results when we add these covariates into the regressions. Column 1
shows our original estimation without controls, and then gender and age are added in column
2. The magnitude of the ITT negative effect slightly reduces to -0.10 and is still statistically
significant at 95% (p-value = 0.025). Column 3 adds all the health-related variables that were
objectively measured in the survey by the interviewer and/or the medical technicians during
the fieldwork. As before, the ITT effect is statistically significant (p-value = 0.063), but the
magnitude of the estimator reduces to -0.083. Column 4 adds the health and nutrition variables
reported by the individuals and shows an ITT effect of -0.096, which is statistically significant
(p-value = 0.029). In the last column we add risk factors captured by the consumption of alcohol
and tobacco and obtain an ITT effect equal to -0.098 (p-value = 0.026).

11See Tables A–1 and A–2 in the Appendix for the definitions of the covariates used in the analysis.
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Thus, adding demographic covariates, initial health conditions and risk factors related to
mortality does not change our results qualitatively. If anything, there is a reduction in the
magnitude of the ITT effect of the programme on 7-year mortality from -0.11 to about -0.10.

Role of covariates

Table 3 reports the contribution to mortality of initial health conditions, nutrition and risk
factors. Not surprisingly, males and older individuals exhibit a higher mortality risk. Individ-
uals who showed high blood pressure (HBP) during the examination in the ESBAM fieldwork
also have a higher mortality risk. This is in line with studies showing that HBP is one of the
most important risk factors for cardiovascular disease, which has been reported as one of the
main causes of mortality in old age (see Arima et al., 2011; Lev-Ari et al., 2021; Lee et al.,
2022). Obesity also contributes to increasing cardiovascular risk and hence higher mortality
risk. We capture obesity in ESBAM by weight and abdominal obesity. The latter is assessed by
comparing waist circumference to cutoffs that are specific for Latin American populations (see
ALAD, 2010; Pajuelo-Ramirez et al., 2019). Our results indicate that obesity contributes to a
higher mortality rate.
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Table 3: Effect of Pension 65 on mortality rate, including covariates

(1) (2) (3) (4) (5)
ITT -0.114** -0.101** -0.083* -0.096** -0.098**

(0.045) (0.045) (0.045) (0.044) (0.044)
Male 0.043** 0.067** 0.072** 0.077**

(0.019) (0.028) (0.029) (0.030)
Age 0.017*** 0.013*** 0.013*** 0.013***

(0.002) (0.002) (0.002) (0.003)
High blood pressure 0.053** 0.043* 0.043*

(0.023) (0.023) (0.023)
Anaemia 0.033 0.038 0.038

(0.024) (0.024) (0.024)
Weight 0.005** 0.006*** 0.006***

(0.002) (0.002) (0.002)
Abdominal obesity 0.045 0.049* 0.049*

(0.030) (0.030) (0.030)
Arm span -0.000 -0.001 -0.001

(0.001) (0.001) (0.001)
Mid-upper arm circ. (MUAC) -0.015** -0.012** -0.012**

(0.006) (0.006) (0.006)
Calf circumference (CC) -0.016*** -0.012** -0.013**

(0.006) (0.006) (0.006)
Cognitive functioning -0.016*** -0.012** -0.012**

(0.006) (0.006) (0.006)
Chronic diseases 0.008 0.007

(0.009) (0.009)
Health today -0.009 -0.010

(0.022) (0.022)
Nutrition score (MNA) -0.015*** -0.015***

(0.005) (0.005)
Alcohol -0.002

(0.025)
Tobacco -0.017

(0.028)
Constant 0.201*** -1.043*** -0.046 0.018 0.017

(0.035) (0.174) (0.317) (0.314) (0.315)
Observations 1,577 1,577 1,513 1,483 1,481

Notes: The table reports the ITT estimates for mortality observed over 7 years (equation 2) including
covariates related to the mortality risk. The models use triangular kernel, local linear polynomial and
the optimal bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table
2). The standard errors are clustered by the Primary Sampling Unit (PSU) of the sampling framing and
are indicated in parenthesis. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate statistical significance
levels.

Mid-upper arm circumference (MUAC) and calf circumference (CC) are well-known in-
dicators of muscle loss, capturing nutritional status and ultimately affecting the mortality risk
of older individuals. It has been shown that individuals with low muscle mass (i.e., thinness)
have a higher risk of mortality (Wijnhoven et al., 2010; Schaap et al., 2018; Weng et al., 2018).
As indicated in Bernal et al. (2022), low values of MUAC or CC are strongly associated with
mortality, with a predictive power even greater than that of the Body Mass Index (BMI). Our

14



results appear to confirm these associations between mortality and values of MUAC and CC.
We observe that the coefficients for these markers are negative and statistically significant in
all the models in Table 3; that is, individuals with signs of thinness are more likely to die. The
magnitude of the effect of one additional centimetre in CC or MUAC is similar in magnitude to
the effect of being one year younger.

Cognitive functioning is captured by a reduced version of the Mini-Mental State Examina-
tion (MMSE) (Folstein et al., 1975), which was operationalised during the survey fieldwork.
The study by Leist et al. (2020) explains this score in greater detail and assesses its relationship
with nutrition by exploiting the baseline round of ESBAM (see definition in Table A–1). We
find that a higher level of cognitive functioning is associated with lower mortality.

The Mini Nutritional Assessment (MNA, the empirical definition of which is explained in
detail in Table A–2) is a score capturing dietary quality and is useful to rapidly assess mal-
nutrition risks through a few questions posed to the elderly individuals (Guigoz, 2006; Harris
and Haboubi, 2005; Vellas et al., 1999). The study by Bernal et al. (2022) – who make use
of the follow-up survey of ESBAM – finds evidence that MNA may be one of the key mecha-
nisms through which Pension 65 could affect nutrition-related health outcomes among eligible
individuals. With regard to the relationship with mortality, we find a strong statistical link to
mortality (β2 = -0.015; p-value = 0.002 in the last model of Table 3). Thus, increasing the qual-
ity of diet and decreasing the risk of malnutrition is associated with a reduction in mortality.

Heterogeneous effects

In order to assess whether the programme may have differential mortality effects for cer-
tain groups of individuals, we estimate models based on equation 3. We report the estimated
ITT coefficients across five distinctive groups (gender, age, area and education) in Figure 3.
While the overall effect of the programme in reducing mortality among eligible individuals is
statistically significant, we do not find evidence of any specific effects on the groups of males,
younger old adults (aged 65–70), persons residing in rural areas and individuals having some
education.12 The ITT effects are statistically significant for individuals who are female, aged
71–80, live in urban areas and who do not have any years of schooling. It is well known that be-
ing older and having lower human capital (e.g., captured by education) is associated with higher
mortality rates. Therefore, our results regarding old and uneducated individuals may indicate
that the programme could substantially reduce the mortality rate for these populations, which
are already facing a high level of mortality risk. Thus, the relative survival gains triggered by
the programme could be more salient for these groups.

12Individuals in the ESBAM sample tend to have very low educational attainment due to poverty conditions
experienced in their lifetime. For example, 27% of individuals have no years of schooling, while 52% have
incomplete primary education and only 14% have completed primary education.
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Figure 3: Heterogeneous effects on mortality rate
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Notes: The graph plots the estimated ITT coefficients from equation 3 for four distinctive
demographic groups (by sex, age, area and education) and the overall effect. The vertical
lines indicate 95% confidence intervals.

We also assess whether the effects of Pension 65 are different for individuals living in house-
holds that receive transfers from the other main social programme in Peru (Juntos) compared
with individuals who live in households that do not receive these transfers. We do not find
statistically significant results in this regard.13 Furthermore, we evaluate whether having more
than one older adult at home (and hence more than one potential recipient) may lead to different
effects of the programme, but again we do not find significant results.14

5.2 ITT effects with survival models

The use of survival models is an alternative to the linear regressions used in the previous section
to estimate the ITT effect. As already explained, we use the log of the hazard ratio of mortality
as the dependent variable to obtain our ITT estimates in a comparable setting to the linear
models (see equation 4). The results are reported in Table 4 and are based on a Gompertz type
parametric model.15

13Juntos is a conditional cash transfer programme that provides benefits to households where there are children
and/or pregnant women on the condition that these members fulfil certain required health and education commit-
ments. To be eligible for this programme, households must be classified as poor by SISFOH (that is, as extreme or
non-extreme poor). Given that our RDD compares extreme and non-extreme poor individuals who are very close
to the eligibility cutoff, then any household of our sample could be potentially eligible for Juntos.

14The effect is 11.1% and 11% for households with one and two eligible individuals, respectively (the results
are not reported).

15The results do not change qualitatively if we use other parametric functions, such as Exponential or Weibull,
or even if a Cox regression is estimated. We report the ITT estimates of alternative functions in Table C–1 in the

16



The last column of Table 4 shows the ITT effect of the programme on the log of the mortality
hazard rate when we use the selected optimal bandwidth. We observe that eligible individuals
have a 57% lower risk of dying than ineligible individuals (hazard ratio = exp(−0.846) = 43%),
which is the same value as the percentage variation in the mortality rate when using the linear
ITT models.

Table 4: Effect of Pension 65 on log of mortality hazard rate

(1) (2) (3)

Intention-to-treat (β̂1) -0.389 -0.585 -0.846
(0.192) (0.255) (0.324)
[0.040] [0.022] [0.009]

Constant (β̂0) -3.909 -3.770 -3.768
(0.160) (0.215) (0.243)
[0.001] [0.001] [0.001]

Bandwidth +/- 0.330 +/- 0.2 +/- 0.145
Observations 3,885 2,104 1,577
Percentage Sample Full sample 54% 41%

Notes: The table reports the ITT estimates for the log of mortality hazard
rate observed during 7 years (equation 4). The estimator corresponds to
a Gompertz-type model. The models use triangular kernel, local linear
polynomial and the optimal bandwidth for point estimation as suggested by
Calonico et al. (2015) (obtained in the last model of Table 2). The standard
errors are indicated in parenthesis. P-values are reported in brackets.

Figure C–1 in the Appendix plots the ITT effect on the log of mortality hazard ratio as a
function of the running variable. As shown before in Figure 2 with the linear estimations, we
also observe a clear reduction in the mortality risk of individuals when they pass the eligibility
threshold. Furthermore, the survival ITT estimates show the same behaviour regarding the
assessment of the effect on alternative bandwidths across heterogeneous groups of individuals
and covariates (see Figures D–5, C–2 and Table C–2 in the Appendix).

5.3 Potential mechanisms

Among the potential mechanisms behind the effect of the transfer on mortality, we note that
Bernal et al. (2022) use the follow-up of the ESBAM survey (fielded between July and Septem-
ber 2015) to estimate the effects of Pension 65 on nutrition-related health outcomes. They
find that the programme has impacts on reducing anaemia and depression symptoms, and in-
creasing nutrition quality, food expenditure, cognitive functioning, healthcare utilisation and
self-reported health, as well as improving mortality risk markers, such as the mid-upper arm
circumference and calf circumference. As already documented, some of these factors have
well-known effects on mortality, and therefore we could consider them as leading mechanisms

Appendix.
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for the effect of the pension transfer on reducing mortality (also see Table 3). That is, the
transfer may allow individuals to increase their food expenditure and nutrition quality, and visit
health facilities more frequently, which can reduce anaemia incidence and mortality risks.

We also accessed the follow-up survey of 2015, so that we are able to run RD regressions
to find the ITT effects of the programme on several outcomes that are potentially mechanisms
affecting the mortality rate. From the 3,885 observations of our baseline, we found 3,514 indi-
viduals who were surveyed in the follow-up. This number is larger than the 3,351 subjects used
in Bernal et al. (2022), because we were able to manually identify respondents whose SISFOH
score was missing.

Table F–1 in the Appendix shows the ITT effects of the programme. The first set of results
in the table use the full sample of the follow-up survey and produce similar results to those
obtained by Bernal et al. (2022). Because the design of the sampling framework involves a very
local sample, the authors argue that one could use the full sample without need to reduce the
– already small – bandwidths. The second set of results show what the ITT effects of the pro-
gramme would be if we use the same bandwidth and kernel weighting utilised in our analysis
of 7-year mortality (bandwidth equal to 0.1448). In this case, the programme may have sig-
nificant impacts on increasing cognitive functioning, reporting chronic diseases, self-reported
health and healthcare utilisation, while reducing obesity and food expenditure per capita at the
threshold.16

The third set of results show the ITT effects when we use the non-parametric approach sug-
gested by Calonico et al. (2015) for each outcome (rdrobust with kernel weights and polynomial
of degree one, and MSE-optimal bandwidths) that is closer to our main analysis of mortality.
For this approach, we observe that the programme reduces the incidences of hypertension and
obesity, improves MUAC (i.e., reduces the mortality risk), self-reported health and healthcare
utilisation, but that it reduces food expenditure per capita at the threshold (p− value=0.082)
even when the effect is positive when we employ the full sample. The survey does not allow
us to identify the consumption of each family member and therefore we should interpret the
result for food expenditure per capita with caution. Furthermore, we detect a statistically signif-
icant increase in the number of household members, which could explain the negative impact
on food expenditure per capita. The programme does not show impacts on total and household
food expenditure under the non-parametric approach.

5.4 Policy impact

An important policy outcome of our analysis is estimating how much longer a person eligible for
the programme could live. Is the Pension 65 programme able to extend the life of its recipients?
If so, then for how long? The structure of our survival data from 2012 to 2019 allows us to

16The positive effect of the programme on chronic diseases can be interpreted as the effect of having more
income to attend healthcare facilities, and receive diagnoses of illnesses and be given information to treat them.
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use actuarial methods to estimate life tables for eligible and ineligible individuals. We organise
the data by year of observation and age, and identify the number of persons dying at each age
between 2012 and 2019. We obtain the average mortality rates between age x and x + 1 using
all the available cohorts providing this information, and then we compute the raw number of
survivors by age.17 We use a Gompertz type function to estimate survival curves at age 65
for both eligible and ineligible individuals and report the results in Figure 4. The estimated
curves show that eligible individuals tend to live longer than ineligible individuals, resulting in
a difference of 1.03 years in life expectancy.

Figure 4: Survival curves for ESBAM sample by eligibility condition
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Notes: The figure shows the estimated survival functions of eligible and ineligible individu-
als. The estimation employs the full ESBAM sample of deceased and surviving individuals
between 2012 and 2019 and assumes a Gompertz-type mortality function.

The estimations indicate that ineligible individuals have a life expectancy at age 65 equal to
20.35 years, whilst this is 21.38 for eligible individuals. To put these figures into context, the
current official life tables for the main contributory pension system in Peru (the Private Pension
System, SPP) indicate that the average life expectancy of both sexes at age 65 is 23.43 years.
Our estimations indicate that the programme could extend life expectancy (measured at age
65) by about 1 year; that is, the life expectancy of eligible individuals may increase by 5.1%
(=1.03/20.35).

In the cost-benefit analysis literature focusing on the impact of regulations on life ex-
pectancy (e.g. Viscusi, 1994; Robinson et al., 2019), a policy is considered cost effective if its
monetary costs are lower than the gains in terms of the value of statistical life (VSL). The VSL

17For example, the mortality rate between age 70 and 71 is the average of the mortality rates of the 1947 cohort
observed in 2013, the 1948 cohort observed in 2014, the 1949 cohort observed in 2015, and so on. This procedure
implies the assumption that we treat cohorts between 1932-1947 as just one cohort. We use the full sample in order
to have enough observations to estimate survival functions by age and eligibility condition.

19



can thus be understood as the willingness to pay for reducing the risk of mortality. As explained
in Robinson et al. (2019), a policy causing a decrease in mortality over a given time period will
reduce the number of deaths and increase life expectancy, and VSL could accordingly capture
the total monetary value of the individual risk reductions as the value per expected life saved.
The estimation of VSL utilising specific data is more widespread among high-income coun-
tries, but there are some studies that estimate and/or extrapolate VSL values for other selected
countries. Table E–1 in the Appendix reports these values for Peru in 2012. Depending on the
approach, the values go from 0.36 to 3.33 million US dollars, with an average of 0.98 million.

The cost of the Pension 65 programme for an eligible individual is estimated as the dis-
counted (interest rate equal to 3%) sum of all the pension transfers the individual could receive
during the expected life length starting at age 65, which amounts to 8,753 US dollars in 2012.
That is, the cost for enabling one more expected year of life is 8,753 dollars. In line with
Miglino et al. (2022), we multiply this amount by the life expectancy estimated for eligible
individuals (21.38 years) and compare it with the estimates of VSL reported in Table E–1 in the
Appendix.18 The cost of the programme is 187,143 US dollars, which is lower than any of the
VSL estimates for Peru. Indeed, the cost of the programme is only 19% or 30% of the average
and median values of VSL, respectively.

A complementary way for reporting the policy impact of the programme – and for compar-
ison with other studies – is to estimate the mortality-income elasticity, which is the percentage
change in mortality due to a 1% change (increase) in income. Given that our analysis is based
on individuals at the baseline, we assume that eligible individuals will receive the pension trans-
fer and ineligible individuals will not receive it. We compute augmented individual incomes by
adding the pension transfer (125 soles) to the household income per capita of the eligible indi-
viduals, and find that the income of eligible individuals could increase by 46.5% on average.
For consistency, we also estimate the average effect of the programme on mortality, obtaining
a variation equal to 22.6%. Thus, the elasticity is equal to -0.486 (= 22.6% / 46.5%) with 95%
confidence intervals between -0.064 and -0.907.19

Our elasticity estimate is larger than the values found in other papers studying the effects
of social pensions on mortality in middle-income countries with less developed social security
systems. For instance, Miglino et al. (2022) find an elasticity of -0.386 based on 4-year mortality
for people aged 65 and older participating in Chile’s social pension programme, Barham and
Rowberry (2013) find an elasticity of about -0.18 based on 1-year mortality for people aged 65
and older who are recipients of Mexico’s social programme, Progresa, Huang and Zhang (2021)
find an elasticity of -0.38 based on 1-year mortality for recipients aged 60 and older from the
Chinese NRPS programme and Jensen and Richter (2004) find an elasticity of -0.244 based on

18However, there is a difference in the method used to estimate life expectancy. Miglino et al. (2022) assume
that their treatment and control groups follow the same mortality profile in the Chilean population after their
observation period of 4 years, while we estimate life expectancy specific to each group.

19Alternatively, if we use household expenditure per capita instead of household income per capita, the elasticity
would be -0.546, with 95% confidence intervals between -0.078 and -1.014.
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2-year mortality for male pensioners aged 60 who suffered pension arrears in Russia. It should
be noted that we consider a longer period than other studies to compute the mortality rate (we
estimate mortality after 7 years).

This could be one of the reasons why we obtain a larger elasticity. Furthermore, it is worth-
while to mention that the population analysed in our study is very poor and has experienced
multiple deprivations across the lifetime, with little access to healthcare, education and quality
nutrition. All of this contributes to a higher mortality risk at the start of the programme. Thus,
the effect of the income transfer could be really important (and more elastic) in preventing death
for the very poor.

6 Validation, falsification and robustness

In this section, we show evidence for our identification assumptions and robustness. First, we
prove that the running variable is unlikely to have been manipulated. Second, we assess the
validity of the design by performing a falsification exercise. Third, we show how sensitive the
results are to the exclusion of observations very close to the cutoff. Lastly, we further illustrate
the robustness of the results by changing the specification of the models and time of exposure
to the programme.

6.1 Manipulation of the running variable

As Lee and Lemieux (2010) point out, if individuals cannot manipulate the assignment vari-
able, then a treatment variation near the threshold is randomised as though in a randomised
experiment. Thus, showing evidence that households have not manipulated the running vari-
able is essential for the credibility of the estimate derived from the RD strategy. We concur
with the arguments given by Bernal et al. (2022) as to why the eligibility process is unlikely
to be susceptible to manipulation: (i) Household answers used in the SISFOH were collected
before the implementation of Pension 65, so there was no incentive to manipulate responses
to participate in a non-existent programme. (ii) The algorithm to compute the SISFOH index
is too complex to be understood by the individuals, and the regional eligibility thresholds are
unknown to the public. (iii) Most of the variables included in the computation of the SISFOH
index are obtained in person by government officials during the fieldwork, so that they cannot
be easily manipulated by the individuals. Thus, manipulation would be unlikely.

We nevertheless test whether households could have manipulated the running variable, first
using the approach suggested by McCrary (2008). This indicates that in the absence of ma-
nipulation, the density of the running variable should be continuous around the threshold. To
formally test whether the density of the running variable is continuous at the threshold, we use
the local polynomial density estimator and test statistic as described in Cattaneo et al. (2018).
Figure D–1 in the appendix plots the estimated empirical density. This graphical representation
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of the test clearly shows that the running variable is continuous at the threshold. Therefore, the
test’s null hypothesis is that the running variable’s density is continuous at the threshold; we fail
to reject the null hypothesis at conventional levels (p-value = 0.132).

A second manipulation test is whether the predetermined characteristics of people change
discontinuously at the threshold. As Cattaneo et al. (2020) point out, one of the most critical RD
falsification tests involves examining whether treated units are similar to control units in terms
of observable characteristics near the cutoff. This test follows from the idea that if people cannot
precisely manipulate the running variable, there should be no systematic differences between
individuals with similar values for this variable. We focus on 15 covariates previously used
in the analysis, all measured at the baseline. To test whether the predetermined covariates are
continuous at the threshold, we estimate equation 2 using each of the predetermined covariates
as the outcome. The estimation results are plotted in Figure D–2 in the Appendix. All the
variables are statistically not different from zero (at 95% confidence level), except for alcohol
use. These results indicate that the predetermined covariates are continuous at the threshold. In
addition, we do not observe any apparent discontinuity at the cutoff when we plot each covariate
as a function of the running variable in Figure D–3 in the Appendix.

In general, these empirical results are consistent with the idea that the institutional setup of
Pension 65 makes it difficult for people to get around the thresholds that classify households
as extremely poor. Consequently, we conclude that manipulation of the running variable is
unlikely in this setting.

6.2 Placebo cutoffs

We asses the validity of the RDD for estimating the impact of the programme at placebo thresh-
olds. To carry out this test, we choose the following thresholds located equidistantly around the
actual eligibility cutoff: -0.06, -0.04, -0.02, 0.02, 0.04 and 0.06. Next, we estimate the impact
of the programme at placebo thresholds and report the results in Table D–1 in the Appendix.
We find no evidence of programme treatment effects at any of the placebo thresholds. In all
cases, the placebo estimates are statistically indistinguishable from zero at the usual levels of
significance. We conclude that the mortality probability and hazard function only change dis-
continuously at the centred zero threshold.

6.3 Sensitivity to observations near the cutoff

Another falsification procedure seeks to investigate how sensitive the results are to the response
of units that are located very close to the cutoff. The idea is that the empirical effects should not
be drastically determined by few observations that are very close to the cutoff. Cattaneo et al.
(2020) propose checking the sensitivity of the results to the exclusion of these few observations
(know as the “donut hole approach”). The authors point out that this strategy is also helpful to
assess the sensitivity of the results to the unavoidable extrapolation applied in local polynomial
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estimation; the reason being that the few observations nearest to the cutoff are likely to be
of considerable influence when fitting the estimation. We choose the following bandwidths
located equidistantly around the actual eligibility threshold: 0.002, 0.004, 0.006, 0.008 and
0.01. We then estimate the impact, excluding the observations that are in these intervals, and
report the results in Table D–2 in the Appendix. In general, we observe that the exclusion of
these observations does not alter the conclusions of the analysis, either in the linear model or in
the survival model.

6.4 Robustness analysis

We analyse the sensitivity of our results to different sizes of bandwidths, different periods to
evaluate mortality and different model specifications. Figures D–4 and D–5 in the Appendix
show the ITT effects, considering alternative bandwidths both for linear and survival models.
We observe that the estimates are statistically significant and negative, yet the magnitude of the
effect is smaller for wider bandwidths. Figure D–6 in the Appendix shows the estimated ITT
effects on mortality for different time windows. There are no statistically significant effects for
one or two years of observed mortality, but the effects start to be significant after the third year.
In fact, there are no significant differences for the effect on mortality on the eligible population
after the third year of observation. Lastly, Figure D–7 in the Appendix plots the ITT effects for
different polynomial orders. Interestingly, the negative effect of the programme on mortality
remains in all these specifications.

7 Conclusions

This paper details a study into the effect of Peru’s social pension programme, Pension 65, on
the mortality rate of elderly poor people. As the programme provides pensions to individuals
aged 65 and above who do not have any other pension benefits and live in households classified
as extreme poor by the official targeting welfare index, we are able to exploit a discontinu-
ity generated by this index. This discontinuity arises when eligible and ineligible individuals
have an index just below or above the official eligibility cutoff point. Therefore, we estimate
intention-to-treat effects in a regression discontinuity setting.

Some important features of our sample are that we use a survey fielded at the beginning
of the programme rollout among individuals who had not been programme recipients; in other
words, we use baseline data. This survey was intentionally designed to apply a regression dis-
continuity design and estimate the causal effects of the programme in a follow-up survey. The
sample framework was designed to include only people located very close to the eligibility
threshold, both the eligible and ineligible. We matched each individual in our sample to admin-
istrative records for the programme and mortality records from the national population register
for the 2012-2019 period.
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Analysing mortality over 7 years, we find that the programme can reduce the mortality rate
of eligible individuals by about 11.4 percentage points. Furthermore, we compute that Pension

65 could increase the life expectancy of eligible individuals by one year. The estimated mone-
tary cost associated with the improvement in life expectancy is much lower than the value of a
statistical life in Peru (the cost being 19-33% of VSL), implying that the policy is cost effective.
The estimated mortality–income elasticity is somewhat higher than the values reported in other
papers studying the mortality effects of social pensions. However, it should be noted that we
have a larger period of observed mortality and the focus of our analysis is on very poor elderly
people who have faced various deprivations during their lifetime, including limited access to
healthcare, nutrition and education. All these features lead to a high mortality risk, so that the
effect of the pension could be very important (and more elastic) in preventing death for the very
poor.
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A Definition of variables

Table A–1: Definition of variables

Variable Definition

High blood pressure It takes value 1 if the systolic blood pressure is greater than or equal to
140 (mm Hg) or if diastolic blood pressure is greater than or equal to
90 (mm Hg), and 0 otherwise.

Anaemia It takes value 1 if the individual has anaemia, and 0 otherwise. The
anaemia condition is determined according to haemoglobin levels
analysed from blood samplings taken during the interview.

Weight Body weight in kilograms.
Abdominal obesity It takes value 1 if the waist measure is larger than the cut-offs that

indicate obesity according to the norms set up by the Latin American
Diabetes Association (see ALAD 2010 and Pajuelo-Ramirez et al.
2019), and 0 otherwise. These cut-offs are 94 cm and 88 cm for men
and women, respectively.

Arm span Arm span in centimeters.
Mid-upper arm
circumference
(MUAC)

Upper middle arm circumference in centimeters.

Calf circumference
(CC)

Calf circumference in centimeters.

Cognitive functioning Is a score (0-13) computed from the points assigned to correct answers
for four questions. Orientation: day of the week, day of the month,
month, and year. Immediate memory: recall of three words read by the
interviewer. Delayed memory: recall of the exact words again later in
the interview. Command: three actions that the respondent must
complete in order: "I will give you a piece of paper. Take this in your
right hand, fold it in half with both hands and place it on your legs".

Chronic diseases It is the total number of chronic medically diagnosed diseases reported
by the individual from a list of 13 diseases.

Health today It takes value 1 if the individual rates her health as good or very good
from a 1-4 Likert scale, and 0 otherwise.

Health compared to
last year

It takes value 1 if the individual rates her health as the same, better or
much better with respect to last year from a 1-5 Likert scale, and 0 if
she rates her health as worst or much worst.

Health compared to
others

It takes value 1 if the individual rates her health as good or very good
with respect to other people of similar age from a 1-4 Likert scale, and
0 otherwise.

Subjective health index It is an index computed with the three subjective health questions
mentioned before. First, we standardised the original variables
containing their Likert-scale values (mean and standard deviation
equal to 0 and 1) and sum up them. Second, we re-scale this value to
obtain an index ranging between 0 an 1. Thus, larger values imply
better perceived health.
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Table A–2: Definition of variables

Variable Definition

Mini Nutritional
Assessment (MNA)
score

Is a score measuring the quality of diet and the risks of under-nutrition
and malnutrition among old individuals. The scores originally ranged
from 0 to 30, but the available information in ESBAM allows us to
compute a score ranging between 0 and 19. The information to
compute the MNA includes variables indicating whether the individual
i) eats three or more meals per day; ii) eats dairy products at least once
a day; iii) eats fruits and vegetables at least twice a day; iv) drinks less
than three glasses of water per day; v) eating eggs, beans or legumes at
least once a week; vi) eats meat, fish or poultry at least three times a
week.

Alcohol It takes value 1 if the individual drank alcohol at least once during the
three months previous to the interview, and 0 otherwise. It is measured
in the baseline ESBAM survey, but not on the follow-up survey.

Tobacco It takes value 1 if the individual smoked during the month previous to
the interview (or before), and 0 otherwise. It is measured in the
baseline ESBAM survey, bu not on the follow-up survey.

Depression symptoms It is the number of depression symptoms (score 0-9) measured with the
geriatric depression scale from Sheikh and Yesavage (1986). This was
measured only in the follow-up survey.

Juntos It takes value 1 if the individual declared the household is the recipient
of the conditional transfer program Juntos, and 0 otherwise.

Attended health centre It takes value 1 if the individual who had any disease or symptom in
the last month went to a health centre to treat them, and 0 otherwise.
The value is set to missing for people who had no any disease in the
last month.

Individual health
expenditure

Expenditure (Soles per month) used by the individual in health
services.

Individual medicine
expenditure

Expenditure (Soles per month) used by the individual to buy
medicines.

Working hours Total number of hours worked in the previous week, including main
and secondary occupations.

Working It takes value 1 if the individual worked the previous week, and 0
otherwise.

Household expenditure Total household expenditure (Soles per month).
Household food
expenditure

Household expenditure on food (Soles per month).

Number of household
members

It is the number of members residing permanently in the household.
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B Descriptive tables and figures

Figure B–1: National distribution of the centred SISFOH score

-0.32 0.32

0

.1

.2

.3

.4

-5 -4 -3 -2 -1 0 1 2 3 4 5
SISFOH score minus eligibility cutoffs

Notes: This figure plots the national distribution of the running variable, that is the SISFOH score
minus eligibility cutoffs (histogram bars). The vertical red lines indicate the maximum and minimum
values (bandwidth) found for the running variable in the ESBAM sample. The sampling framework
correspond to observations located within this bandwidth. The data come from the SISFOH census of
2012/2013.
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Figure B–2: Cumulative distribution of household income per capita in Peru and ESBAM
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Notes: The figure plots the cumulative distribution of monetary gross household income per capita
in Peru and the ESBAM Sample. The national income distribution is computed by exploiting the
National Household Survey (ENAHO) collected in 2012. Income is transformed as log(1+income) for
visualisation purposes.
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Table B–3: Cumulative number of Pension 65 recipients

Year
Survived
eligibles

Survived
ineligibles

Num. of
recipients

RD
Estim. S.E. 95% C.I.

2013 2,475 1,338 1,963 0.689 0.029 0.632 0.745
2014 2,427 1,307 2,191 0.822 0.023 0.777 0.866
2015 2,370 1,272 2,243 0.852 0.020 0.812 0.891
2016 2,316 1,237 2,342 0.787 0.025 0.738 0.836
2017 2,242 1,194 2,567 0.602 0.033 0.537 0.667
2018 2,172 1,149 2,674 0.525 0.033 0.461 0.589
2019 2,093 1,115 2,746 0.472 0.034 0.405 0.539

Notes: The first and second columns indicate the number of individuals who have survived until
December of each year by the eligibility condition measured at the baseline (i.e. according to the
SISFOH rules of 2012). The third column shows the accumulated number of individuals each
year who have received the transfer from the programme, regardless of their survival or disease
condition. The RD estimator is computed as the change in the intercept of two estimated linear
regressions that fit separately on each side of the eligibility cutoff.
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Figure B–3: Probability of being a Pension 65 recipient at different evaluation periods
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Notes: The graphs plots the probability of receiving Pension 65 anytime in the indicated period as a
function of the running variable (SISFOH score minus eligibility cutoffs). The support of the running
variable has been partitioned into exclusive bins. The number of bins is selected optimally to minimise
the integrated mean square error of the underlying regression function, and the location is based on
quantile spaced method using spacings estimators as suggested in Calonico et al. (2015). The square
points indicate the local mean of the outcome at the mid-point of each bin. The bars represent the 95%
confidence intervals of the local means. The solid lines are linear regressions that fit separately on each
side of the threshold. Observations to the left (right) of the vertical dashed line are eligible (ineligible)
to the programme.
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C Tables and figures of survival models

Figure C–1: Intention-to-treat in survival model
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Notes: The graph plots the log of the hazard ratio of mortality observed over 7 years as a function of the
running variable (SISFOH score minus eligibility cutoffs). The parametric model follows a Gompertz
distribution. The lines are linear regressions that fit separately on each threshold side. Observations to
the left (right) of the vertical dashed line are eligible (ineligible) to the programme.

Table C–1: Effect of Pension 65 on log of mortality hazard rate under alternative functions

Model ITT Estimator 95% C.I.
Cox -0.853 -1.620 -0.086
Exponential -0.838 -1.470 -0.206
Weibull -0.847 -1.483 -0.210

Notes: The table reports the ITT estimates for the log of mortal-
ity hazard rate observed over 7 years (equation 4). The estima-
tors correspond to a non-parametric version (Cox model) and
two parametric models (Exponential and Weibull). The models
use triangular kernel, local linear polynomial and the optimal
bandwidth for point estimation as suggested by Calonico et al.
(2015) (obtained in the Table 2).
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Table C–2: Effect of Pension 65 on log of mortality hazard rate including covariates

(1) (2) (3) (4) (5)
ITT -0.846*** -0.782** -0.648* -0.771** -0.779**

(0.324) (0.334) (0.340) (0.347) (0.347)
Male 0.333** 0.524*** 0.540*** 0.570***

(0.136) (0.196) (0.202) (0.208)
Age 0.112*** 0.090*** 0.087*** 0.089***

(0.015) (0.016) (0.016) (0.016)
High blood pressure 0.369** 0.329** 0.329**

(0.161) (0.164) (0.164)
Anaemia 0.230 0.277* 0.285*

(0.154) (0.155) (0.156)
Weight 0.036** 0.045*** 0.044***

(0.015) (0.015) (0.015)
Abdominal obesity 0.328 0.369* 0.380*

(0.216) (0.223) (0.223)
Arm span -0.001 -0.007 -0.007

(0.010) (0.011) (0.011)
Mid-upper arm circ. (MUAC) -0.128*** -0.113** -0.113**

(0.044) (0.044) (0.044)
Calf circumference (CC) -0.108*** -0.090** -0.091**

(0.035) (0.036) (0.036)
Cognitive functioning -0.111*** -0.084** -0.084**

(0.034) (0.035) (0.035)
Chronic diseases 0.046 0.045

(0.055) (0.055)
Health today -0.089 -0.094

(0.164) (0.165)
Nutrition score (MNA) -0.100*** -0.100***

(0.036) (0.036)
Alcohol 0.073

(0.197)
Tobacco -0.144

(0.188)
Constant -3.768*** -12.084*** -5.046** -4.481** -4.585**

(0.243) (1.174) (2.122) (2.209) (2.205)
Observations 1,577 1,577 1,513 1,483 1,481

Notes: The table reports the ITT estimates for the log of mortality hazard rate observed over 7
years (equation 4), including covariates related to the mortality risk. The estimator corresponds to
a Gompertz-type model. The models use triangular kernel, local linear polynomial and the optimal
bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table 2). The stan-
dard errors are indicated in parenthesis. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate statistically
significance levels.
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Figure C–2: Heterogeneous effects on the log of mortality hazard rate
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Notes: The graph plots the estimated ITT coefficients from equation 4 for four distinctive
demographic groups (by sex, age, area, and education) and the overall effect. The vertical
lines indicate 95% confidence intervals.
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D Sensitivity and robustness checks

Figure D–1: Histogram and manipulation test based on density discontinuity
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Notes: Panels A and B plot the histogram and empirical density of the running variable
(SISFOH’s index minus thresholds). Panel (b) corresponds to the test proposed by Cattaneo
et al. (2018), using a bandwidth size of 0.16 points of the running variable on the left side
of the cutoff and a bandwidth size of 0.10 on the right side of the cutoff. Also, a local
cubic approximation is used in density estimators and bias-corrected density estimators. No
significant discontinuity is found (pvalue=0.1323 under the null hypothesis that density is
continuous at the threshold).
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Figure D–2: Balance of covariates
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Notes: This figure plots the ITT estimates of equation 2 using the listed covariates as dependent vari-
ables instead of mortality. Variables are standardised to facilitate comparison. All the estimated models
use the triangular kernel, local linear polynomial, and the optimal bandwidth for point estimation as
suggested by Calonico et al. (2015) (obtained in Table 2). The vertical lines indicate 95% confidence
intervals.
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Figure D–3: Continuity in observables
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Notes: The graph plots the listed covariates as a function of the running variable (SISFOH score minus eligibility cutoffs). The support of the
running variable has been partitioned into exclusive bins. The number of bins is selected optimally to minimise the integrated mean square error
of the underlying regression function, and the location is based on quantile spaced method using spacings estimators as suggested in Calonico
et al. (2015). The square points indicate the local mean of the outcome at the mid-point of each bin. The bars represent the 95% confidence
intervals of the local means. The solid lines are linear regressions that fit separately on each side of the threshold. Observations to the left
(right) of the vertical dashed line are eligible (ineligible) to the programme.
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Table D–1: ITT effects under alternative cutoffs

Alternative Optimal OLS model Survival model
cut-offs (x100) bandwidth ITT P-value ITT P-value

-6 0.209 0.029 0.515 0.212 0.459
-4 0.145 -0.010 0.922 -0.027 0.969
-2 0.116 -0.069 0.115 -0.542 0.108
0 0.145 -0.114 0.011 -0.846 0.009
2 0.344 -0.033 0.255 -0.225 0.243
4 0.213 -0.027 0.544 -0.180 0.522
6 0.238 -0.038 0.403 -0.259 0.374

Notes: The table reports the ITT effects estimated for equations 2 and 4 in alternative cut-
offs. The models use triangular kernel and local linear polynomial, and use the optimal
bandwidth for point estimation as suggested by Calonico et al. (2015) obtained in linear
regression. The standard errors are clustered by the Primary Sampling Unit (PSU) of the
sampling framing.

45



Table D–2: Sensitivity to observations near the cutoff (donut hole approach)

Donut-hole Excluded Obs. OLS Model Survival Model
Radius (x1000) Left Right ITT p-value ITT p-value

0 0 0 -0.114 0.011 -0.846 0.009
2 7 0 -0.118 0.009 -0.875 0.008
4 11 0 -0.114 0.046 -0.839 0.011
6 16 18 -0.103 0.033 -0.761 0.027
8 16 20 -0.108 0.027 -0.790 0.022

10 17 21 -0.110 0.026 -0.796 0.022

Notes: The table reports the ITT effects estimated for equations 2 and 4 excluding observations around
cut-off. All the estimated models use triangular kernel, and the optimal bandwidth for point estimation
as suggested by Calonico et al. (2015) (obtained in the Table 2). The standard errors are clustered by
the Primary Sampling Unit (PSU) of the sampling framing.
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Figure D–4: ITT effects by alternative bandwidths
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Notes: This figure plots the ITT effects estimated for equation 2 for alternative bandwidths. All the esti-
mated models use triangular kernel and local linear polynomial. The horizontal axis shows the percentage
of the sample employed for each estimated model. CCT corresponds to the optimally estimated bandwidth
proposed by Calonico et al. (2015). The vertical lines indicate 95% confidence intervals.

Figure D–5: ITT effects on the log of mortality hazard ratio by alternative bandwidths
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Notes: This figure plots the ITT effects estimated for equation 4 for alternative bandwidths. All the
estimated models use triangular kernel and local linear polynomial. The horizontal axis shows the per-
centage of the sample employed for each estimated model. CCT corresponds to the optimally estimated
bandwidth proposed by Calonico et al. (2015). The vertical lines indicate 95% confidence intervals.
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Figure D–6: ITT effects by period of observed mortality
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Notes: This figure plots the ITT effects estimated for equation 2 for alternative periods of observed
mortality. The horizontal axis indicates the last year (December) of observed mortality, starting in
December 2012. All the estimated models use the triangular kernel, local linear polynomial, and the
optimal bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table 2).
The vertical lines indicate 95% confidence intervals.
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Figure D–7: ITT estimator assuming different order of polynomials
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Notes:: This figure plots the ITT effects estimated for equation 2 for different order of polynomials.
The support of the running variable has been partitioned into exclusive bins. The number of bins is
selected optimally to minimise the integrated mean square error of the underlying regression function,
and the location is based on quantile spaced method using spacings estimators as suggested in Calonico
et al. (2015). The square points indicate the local mean of the outcome at the mid-point of each bin. The
bars represent the 95% confidence intervals of the local means. The solid lines are linear regressions
that fit separately on each side of the threshold. Observations to the left (right) of the vertical dashed
line are eligible (ineligible) to the programme.
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E Value of Statistical Life (VSL)

Table E–1: Value of Statistical Life (VSL) estimations for Peru (2012)

Study Features VSL (USD)
Robinson et al. (2019) base=160; ε = 1.5 427,711
Robinson et al. (2019) base=100, ε = 1.0 606,786
Robinson et al. (2019) base=160, ε = 1.0 970,858
Viscusi and Masterman (2017) ε = 1.0 1,044,306
Sweis (2022) γ = 0.1 3,348,777
Sweis (2022) γ = 1.0 362,030
Sweis (2022) γ = 0.5 633,552
Mardones and Riquelme (2018) predicted from other studies 451,746

Notes: This table shows the Value of Statistical Life (VSL) estimated for Peru in different
studies. All cases have been adapted to show the VSL in 2012 Dollars. Robinson et al.
(2019) extrapolate VSL estimates of US using different base values and income elasticity
(ε). The base value multiplies the Gross National Income (GNI) per capita, while the ε sum-
marises the rate at which VSL changes with income.Viscusi and Masterman (2017) uses uni-
tary income elasticity and their US estimate of VSL to compute VSL in 189 coutries. Sweis
(2022) uses a consumption-health maximisation framework to measure the VSL in selected
countries in order to measure the total value of loss from deaths caused by COVID-19. She
presents estimates of VSL by different values of γ , which is the degree of homogeneity of
the utility function (a smaller gamma implies more benefits to invest in health and survive
longer), yet the author prefers γ = 0.5 to measure the value of COVID-19 deaths. Mardones
and Riquelme (2018) use VSL estimates from different studies to estimate the relationship
between Gross Domestic Product (GDP) per capita and VSL, and then predict the VSL for
selected Latin American countries.

50



F Mechanisms

Table F–1: ITT effects of Pension 65 on various outcomes (2015 follow-up sample)

All sample Bandwidth 0.1448 Non-parametric
Outcomes Effect N Effect N Effect N

High blood pressure 0.091 3,494 -0.175 1,414 -0.284* 1,235
Anaemia -0.246*** 3,454 0.000 1,397 0.228 469
Weight 0.127 3,478 -0.122 1,407 -0.294 644
Abdominal obesity 0.118 3,512 -0.244* 1,424 -0.498* 473
Arm span 0.014 3,481 -0.062 1,409 0.265 469
Mid-upper arm circ. (MUAC) 0.322*** 3,496 0.086 1,415 0.250* 1,828
Calf circumference (CC) 0.260*** 3,492 -0.117 1,415 -0.093 689
Depression symptoms -0.237*** 3,511 -0.151 1,424 0.239 476
Cognitive functioning 0.333*** 3,449 0.380*** 1,403 -0.058 443
Chronic diseases 0.356*** 3,512 0.562*** 1,424 -0.052 449
Nutrition score (MNA) 0.307*** 3,354 -0.015 1,355 -0.148 621
Health today 0.131 3,506 0.226* 1,422 -0.008 481
Health compared to last year 0.292*** 3,503 0.327** 1,422 0.267* 1,247
Health compared to other people 0.197** 3,455 0.084 1,401 0.022 1,220
Subjective health index 0.246*** 3,454 0.217 1,400 0.100 649
Attended health centre 0.347*** 2,474 0.718*** 1,005 0.570** 476
Indiv. health expenditure 0.106 3,512 0.173 1,424 0.157 1,856
Indiv. medicine expenditure 0.120** 3,512 0.127 1,424 0.098 3,037
Working hours -0.298*** 3,512 -0.108 1,424 -0.102 1,322
Working -0.311*** 3,512 -0.094 1,424 -0.068 1,243
Household expenditure 0.544*** 3,512 0.025 1,424 -0.071 1,322
Household food expenditure 0.486*** 3,512 -0.109 1,424 -0.203 743
Expenditure per capita 0.332*** 3,494 -0.233 1,416 -0.495 634
Food expenditure per capita 0.382*** 3,494 -0.328** 1,416 -0.418* 654
Number of household members 0.276*** 3,512 0.461*** 1,424 0.396*** 3,507

Notes: The table reports the ITT effects of Pension 65 on various outcomes measured during the follow-up survey
fielded between July and September 2015. All the outcomes have been standardised to show mean equal to zero
and standard deviation equal to one. From the 3,885 observations of our baseline, we found 3,514 individuals
surveyed in the follow-up. The first column reports the ITT effects on all the 2015 sample, the third column
reports the ITT effects when we use the bandwidth considered in our main analysis of mortality on the baseline
sample (bandwidth equal to 0.1448) and kernel weights, and the fifth column shows the ITT effects when we use
the non-parametric approach suggested by Calonico et al. (2015) for each outcome (rdrobust with kernel weights
and polynomial of degree one, and MSE-optimal bandwidths). The standard errors are clustered by the Primary
Sampling Unit (PSU) of the sampling framing. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate statistically
significance levels based on those standard errors.
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