An Aggregate Learning Approach for Interpretable Semi-supervised Population Prediction and Disaggregation Using Ancillary Data

Guillaume Derval, Frédéric Docquier, Pierre Schaus

Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collectionConference contributionRevue par des pairs

Résumé

Census data provide detailed information about population characteristics at a coarse resolution. Nevertheless, fine-grained, high-resolution mappings of population counts are increasingly needed to characterize population dynamics and to assess the consequences of climate shocks, natural disasters, investments in infrastructure, development policies, etc. Dissagregating these census is a complex machine learning, and multiple solutions have been proposed in past research. We propose in this paper to view the problem in the context of the aggregate learning paradigm, where the output value for all training points is not known, but where it is only known for aggregates of the points (i.e. in this context, for regions of pixels where a census is available). We demonstrate with a very simple and interpretable model that this method is on par, and even outperforms on some metrics, the state-of-the-art, despite its simplicity.
langue originaleAnglais
titreMachine Learning and Knowledge Discovery in Databases. ECML PKDD 2019
Sous-titreWürzburg, Germany, September 16–20, 2019, Proceedings, Part III
rédacteurs en chefUlf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes Maathuis, Céline Robardet
EditeurSpringer
Pages672-687
ISBN (Electronique)978-3-030-46133-1
ISBN (imprimé)978-3-030-46132-4
Les DOIs
étatPublié - 30 avr. 2020

Série de publications

NomLecture Notes in Computer Science book series (LNCS)
EditeurSpringer
Volume11908
ISSN (imprimé)0885-6125

Une note bibliographique

Accepted at ECML-PKDD 2019 Data on Zenodo: https://zenodo.org/record/3260713

Contient cette citation