Towards Robust Contrail Detection by Mitigating Label Bias via a Probabilistic Deep Learning Model: A Preliminary Study

Yejun Lee, Eun-Kyeong Kim, Jaejun Yoo

Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collectionConference contributionRevue par des pairs

Résumé

Contrails, formed by jet flights, alter Earth's energy balance, prompting research into monitoring contrails and developing satellite-based automated contrail detection. This demand has advanced deep learning (DL)-based techniques. However, training DL algorithms to detect contrails has limitations: class imbalance, labeling difficulty, and a lack of reliable labeled datasets. We propose a probabilistic DL approach using P-UNet to alleviate label bias in contrail detection. By observing model outputs based on two labeled datasets, OpenContrails and MIT-Contrails, we found the probabilistic approach robust against potentially biased labels.
langue originaleAnglais
titreSIGSPATIAL '23: 31st ACM International Conference on Advances in Geographic Information Systems
Sous-titreHamburg, Germany, November 13-16, 2023
rédacteurs en chefMaria Luisa Damiani, Matthias Renz, Ahmed Eldawy, Peer Kröger, Mario A. Nascimento
Lieu de publicationNew-York
EditeurAssociation for Computing Machinery (ACM)
Pages1-2
Nombre de pages2
ISBN (imprimé)979-8-4007-0168-9
Les DOIs
étatPublié - 22 déc. 2023

Contient cette citation